
FACULTY OF ENGINEERING AND TECHNOLOGY

MASTER OF SOFTWARE ENGINEERING (SWEN)
MASTER THESIS

An Authentication/Authorization

Approach for a Microservices

Architecture

Author:

Mohammad Arouri

(1165409)

Supervisor:

Dr. Yousef Hassoneh

August 18, 2020

1

2

Abstract

Microservices architecture is an evolving trend in software engineering that en-

ables building large scale, highly scalable, available and flexible systems. How-

ever, microservices are not a silver bullet, they have their challenges and com-

plexities. One of these main challenges is security.

State-of-the-art shows that microservices security and their aspects are an

important challenge that is not well researched and needs more attention. Among

these aspects are authentication and authorization. For microservices applica-

tions to be secure, a proper authentication and fine-grained authorization frame-

work should be in place.

In this research, we propose a new security framework for authentication

and fine-grained authorization (MSFAA) that relies on the use and coordina-

tion of a set of security standards and frameworks to tackle the security re-

quirements in a microservices architecture. Our solution is based on a combi-

nation of OAuth2, JWT and Open Policy Agent (OPA). To evaluate our results,

we adopted an industrial motivating use case, the Applicant Tracking System

(ATS). On top of it, we implemented our security framework and evaluated the

effectiveness of the proposed framework. To study the performance implica-

tions of our security framework, we designed and conducted an experiment in

which we measured the overhead caused by the proposed security framework

in terms of API latency. Our results show that the performance overhead of the

3

security framework is around 12%. We believe that this is an acceptable over-

head due to two main reasons. The first reason is that security is an essential

and critical aspect in a microservices systems. The second reason is that mi-

croservices are tolerant to API latency due to their distributed nature.

5

Contents

Abstract 2

1 Introduction 13

1.1 Microservices Overview . 13

1.2 Microservices Definition . 14

1.3 Basic Microservices Characteristics 15

1.4 Comparing Microservices with Monolithic Applications 15

1.5 Microservices Advantages . 16

1.6 Microservices Disadvantages . 18

1.7 The Lack of Research about Microservices Aspects 19

1.8 Available schemes for Authentication and Authorization 20

1.9 Research Objectives and Problem Statement 21

1.10 Summary of contributions . 22

1.11 Structure of this thesis . 23

2 Background 25

2.1 Access Control Models . 25

2.1.1 Mandatory Access Control (MAC) 26

2.1.2 Discretionary Access Control (DAC) 26

2.1.3 Role-Based Access Control (RBAC) 27

6

2.1.4 Attribute based Access Control (ABAC) 27

2.2 Security Tokens Platforms . 28

2.2.1 API Keys . 28

2.2.2 Open Authorization (OAuth2) 29

2.2.3 OpenID Connect . 31

2.2.4 JSON Web Tokens (JWT) . 31

2.3 Fine-Grained Authorization Frameworks 32

2.3.1 Comparison between Fine-grained authorization and Coarse-

grained authorization . 33

2.3.2 The eXtensible Access Control Markup Language (XACML) 34

2.3.3 Open Policy Agent (OPA) 35

2.4 Emerging Security Techniques . 36

2.4.1 Sidecar for Endpoint Security 36

2.4.2 Multiple Trust Domains . 37

2.5 Connecting the Dots . 38

2.6 Summary . 39

3 Literature Review 40

3.1 Microservices in Literature . 40

3.2 Microservices Security in Literature 41

3.3 Microservices Security Goals . 42

3.3.1 Defend the Greater Attack Surface 43

3.3.2 Handle Network and Communication Complexity 44

3.3.3 Establish Trust between Microservices 45

3.4 Authentication/Fine-Grained Authorization Security Frameworks 47

3.5 Summary . 50

7

4 Microservices Security Framework for Authentication and Fine Grained

Authorization (MSFAA) 52

4.1 Motivating Use Case, The Applicant Tracking System (ATS) . . . 53

4.1.1 Functional Requirements 54

4.1.2 Modeling Microservices . 54

4.1.3 REST APIs Design . 57

4.2 Security Requirements and Assumptions 57

4.2.1 Security Requirements . 57

4.2.2 Security Assumptions . 59

4.3 The Security Model . 59

4.3.1 Security Model Services . 60

4.3.1.1 The Certificate Authority Service (CA) 60

4.3.1.2 The Authorization Server 60

4.3.1.3 The API Gateway 61

4.3.1.4 The Sidecar for endpoint Security 61

4.3.1.5 Security Trust Domains 63

4.3.2 Security Standards . 63

4.3.3 Security Model Architectural Diagrams 64

4.3.4 Security Checks and the Appliance of Security Requirements 65

4.3.5 Security Model Sequential Flows 68

4.4 Threat Model . 72

4.4.1 Threats and Counter measurements 74

4.4.1.1 Network Threats 75

4.4.1.2 Host Threats . 75

4.4.1.3 Application Threats 76

4.4.1.4 Parameter Manipulation 77

4.5 Summary . 77

8

5 Methodology and Experimental Design 78

5.1 Research Methodology . 78

5.2 Experiment Design . 80

5.2.1 Research Hypothesis . 80

5.2.2 Dependent Variable . 81

5.2.3 Independent Variables . 81

5.2.4 Neutralized Variables . 82

5.2.5 Measuring Performance . 85

5.3 Summary . 87

6 Experiment 88

6.1 Implementation Technologies . 88

6.1.1 Microservices . 89

6.1.2 API Gateway . 91

6.1.3 Authorization Server . 91

6.1.4 The Sidecar for endpoint Security - Open Policy Agent . . 92

6.2 Microservices Security Framework for Authentication and Fine

Grained Authorization (MSFAA) in Action 93

6.2.1 Accessing resources in a single security trust domain . . . 94

6.2.2 Accessing resources that expand two security trust domains 99

6.3 Evaluation and Statistics . 102

6.3.1 Experiment Runs . 102

6.3.2 Normality Tests . 104

6.3.3 API Latency Overhead Statistical Analysis 106

6.4 Summary . 106

7 Discussion 107

7.1 Security Framework Effectiveness 107

9

7.1.1 State-of-the-art Security Frameworks Strengths and Limi-

tations . 108

7.1.2 Security Requirements Satisfaction 110

7.1.3 Security framework generalizability and portability 110

7.1.3.1 Industrial use case 111

7.1.3.2 Cloud based framework 111

7.1.3.3 Security standards 111

7.1.3.4 Sidecar for endpoint security 112

7.2 Security Framework Performance 112

7.2.1 Security Framework Performance Implications 112

7.2.2 Implementing a second security framework 116

7.3 Summary . 118

8 Conclusions and Future Work 119

8.1 Conclusion and Future Work . 119

8.2 Threats to Validity . 122

Bibliography 122

Appendices 130

A Architectural and Sequential Diagrams Symbols Definitions 131

10

List of Figures

2.1 API Key Usage Overview . 29

2.2 Overview of OAuth2 Flow . 30

2.3 JWT Example . 32

2.4 XACML Data Flow Model . 35

2.5 Open Policy Agent (OPA) Data Flow Model 36

4.1 Applicant Tracking System (ATS) Use cases 55

4.2 Applicant Tracking System Architecture (the null-architecture) . . 56

4.3 Microservice with a Sidecar Overview 63

4.4 Client Accessing a Microservice Flow 64

4.5 Security Framework Architecture for One Trust Domain 65

4.6 Security Framework Architecture for Multiple Trust Domains . . 66

4.7 Acquiring Access Token Sequence Diagram 69

4.8 Security Checks for a Client Request Sequence Diagram 70

4.9 Security Checks for a Microservice accesses another Microservice

in Different Trust Domain on behalf of a Client 71

4.10 Threat Model Data Flow Diagram (DFD) 73

5.1 Experiment Workflow . 79

5.2 Apache JMeter Setup Overview . 86

11

6.1 Microservice Project Structure Sample 90

6.2 API Gateway Setup . 91

6.3 Authorization Server Setup . 92

6.4 JWT Sample . 93

6.5 Open Policy Agent (OPA) Policy Sample Written in Rego 94

6.6 User Submits Credentials for Authentication 94

6.7 Authorization Server Redirects Resource Owner to Client App

with Authorization Code . 95

6.8 Client Application Exchanges Authorization Code with an Access

Token . 95

6.9 Access Token Sample Details . 96

6.10 Authorized API Call Sample . 96

6.11 Security Checks Applied - One Security Trust Domain 97

6.12 API Gateway Rejects Unauthorized Request 98

6.13 Open Policy Agent (OPA) Rejects Unauthorized Request 98

6.14 Multiple Security Trust Domains API Security Checks Flow . . . 100

6.15 Acquiring an Access Token for the Second Security Trust Domain 101

6.16 Authorized API Call Sample - Two Security Domains 101

6.17 An Aggregated Overview of API Samples compared to Latency . 104

6.18 API Requests Latency . 105

6.19 Quantile - Quantile Plot . 105

7.1 API Latency Overhead with One Security Trust Domain 113

7.2 API Latency Overhead with Two Security Trust Domains 114

A.1 Architectural and Sequential Diagrams Symbol Definitions 131

12

List of Tables

4.1 Applicant Tracking System (ATS) Functional Requirements 54

4.2 Applicant Tracking System (ATS) REST API Design 58

6.1 Experiment runs results . 103

13

Chapter 1

Introduction

In this chapter, we give an overview about microservices, their definition and

characteristics, compare microservices with the previous monolithic applica-

tions, explain the main advantages and disadvantages of using microservices

architecture, and focus on the lack of research in microservices aspects, espe-

cially the security aspect that brought our attention. Finally, we present our

research objectives, contributions and provide an overview of our next steps.

1.1 Microservices Overview

Microservices architecture is a trending architectural style in the industry, it has

been gaining a lot of attention and momentum for the past few years. Big com-

panies like Netflix [41], Amazon [4] and Uber [13] have shifted their systems

to use microservices architecture. The International Data Corporation has pre-

dicted that 80% of application development on cloud platforms will be built

using Microservices architecture by the end of 2021 [31]. This momentum is

pushed by a set of factors; one of these factors is the enterprise movement to es-

cape from the monolith hell. Another factor is that companies are in a continu-

ous pursuit to modernize their existing applications [47]. Young companies and

14

startups use microservices seeking the joy benefits of technology heterogeneity,

use the right tool for the right job, resilience, scaling, ease of deployment, better

organizational alignment and easier replaceability [40].

1.2 Microservices Definition

One of the earliest definitions for microservices was provided by Lewis and

Fowler [32]. They stated that microservices architecture is a development ap-

proach in which a single application is built as a group of small services, each of

these services run in its own independent process. These small services commu-

nicate with each other using a lightweight protocol, usually HTTP APIs. These

services are built and grouped as a reflection of business capabilities. Microser-

vices should be independently managed, deployed and usually built using dif-

ferent programming languages, frameworks and storage technologies.

In his famous book “Building Microservices” [40], Sam Newman defined

microservices as a small, focused, autonomous services that are built around

business entities. Microservices follow important familiar concepts. One ex-

ample is the “Single Responsibility Principle”, which encourages to gather the

functionalities that change for the same reason together and separate the other

functionalities that change separately for different reasons.

Another definition for Microservices is an architectural style derived from

the service oriented architecture and enriched with other principles and good

practices like the unix principle ‘Do one thing and do it well (DOTADIW)’ [62].

15

1.3 Basic Microservices Characteristics

By definition, all microservices share a set of characteristics; isolation, standard

interface, autonomy and fine grained. Each microservice is a standalone service

that can be managed, deployed, maintained and even destroyed in isolation

from other microservices. Each one of them has a standard way to communi-

cate with other microservices as well as with the external world. Same can be

said about the APIs exposed by these services, either for another microservice

within the same system or for an external actor, all of these exposed APIs share

a common standard way of communication.

The autonomy of the microservice is established by the idea of the indepen-

dency of deployment, scaling, management and life cycle. Each microservice

works in its bounded context. This basically means that each microservice does

only one thing and does it well. This will make each microservice a fine grained

component in its own.

1.4 Comparing Microservices with Monolithic Applications

Service oriented architecture has been used for over a decade. Microservice ar-

chitecture can be considered as a new enhanced derivation of the old service

oriented architecture. While service oriented architecture focuses on providing

a small number of interconnected components that are usually large and com-

plex, which are referred to as monolithic applications. Microservices tend to

provide many small components that are lighter and simpler. This main prac-

tice ensures better maintainability, faster development cycles and shorter time

to release [16].

16

Monolithic applications have a lot of disadvantages that drove developers

away from using them. One of these disadvantages is code maintainability. In

a monolithic application, codebases are shared between a big team of develop-

ers. If a developer wants to introduce a new concept, restructure an existing

component or integrate with a new library, she needs to take approval from all

involved parties. She also needs to make sure not to break anything within this

large monolithic application. This makes it a hard task to accomplish and very

time consuming.

Scalability is another issue of monolithic applications. If a component has

more demand, the whole application needs to be scaled in order to meet this new

demand. More scale means more resources, which in turn means additional cost.

This makes monolithic applications scaling a pain point and a delicate decision

to make.

Handling deployments is another issue in monolithic applications. If a com-

ponent is modified and ready to be shipped, or if a critical bug is fixed, the entire

application needs to be deployed at once [1].

Code understandability is another concern in monolithic applications. The

codebase is usually large. The developer needs a lot of time to grasp the different

aspects of the application structure, modularity, components and functionality.

1.5 Microservices Advantages

Microservices have a lot of benefits, including the enablement of technology het-

erogeneity, resilience, scaling, ease of deployment, better organizational align-

ment and easier replaceability [40].

17

When the system is decomposed into many services. Developers can decide

which technology they want to use, which programming language, framework,

datastore or even operating system they prefer. This will make it easier to pick

the right tool for the right job.

The use of microservices enables faster technology adoption and more rapid

changes; if an emerging technology appears, developers can easily use this tech-

nology in some parts of the system by applying it to a subset of microservices,

without the need to apply it to the entire system at once. The capability to ap-

ply changes to a specific set of microservices without putting the entire system

at risk gives the developers more confidence in applying changes rapidly and

efficiently to the system.

Resiliency is a key concept in software engineering. If one component of the

system fails, the overall system should not fail by not allowing the failure to cas-

cade. Prior to microservices, this was a difficult job to achieve, due to the high

coupling between the different components of the monolithic application or be-

tween the different services in a Service Oriented Architecture (SOA) based sys-

tem. The principles of service boundaries and bounded context of microservies

enabled them to work independently. If one of the microservices went down,

that particular functionality is disrupted and the remaining parts of the system

continue to work [40].

Another win for the microservices is the scale. As discussed before, scaling

a monolithic application is a pain point and delicate decision to make due to the

large consumption of resources. On the other hand, microservices scale is easier

and more cost efficient. If a microservice is needed to scale, that particular part of

the system can be scaled independently from the other parts. Microservices also

18

made adapting modern concepts like on-demand provisioning easier. Which

opened the door for more optimal and efficient scaling, yielding to more and

more cost savings [47].

Another key benefit of microservices is the ease of deployment. Adapting

the concepts of continuous integration and continuous deployment become easy

and best practice in microservices. Teams can deploy their microservices inde-

pendently. If changes are made to a particular microsevice, that microservice

can be tested and deployed in a stand alone fashion.

Having smaller codebases have a lot of benefits, it makes it easier to under-

stand, modify and test the codex. Microservices enable organizations to mini-

mize the number of developers working on a particular service, because each of

these services can be run, maintained and managed independently.

One last benefit of microservices is the ease of replaceability. When the sys-

tem is composed of lightweight bounded services, replacing one of them with a

newer, better implemented codebases or even putting one of them in retirement

is relatively an easy task. Microservices enable teams to be more comfortable

with their codebases and provide them with more space for management and

maintainability.

1.6 Microservices Disadvantages

All of the benefits discussed in the previous section don’t come without a price.

Microservices are not a silver bullet, they have their disadvantages as well. Mi-

croservices have all the inherited complexities of distributed systems. Things

19

that were simple to manage like transactions become distributed. Handling dif-

ferent technology stacks, platforms require more effort at the system level. With

the distributed codebases, datastores and services, testing becomes much more

complicated and the need for more modern tools become crucial. Another as-

pect is monitoring, monitoring a distributed system and identifying problems

become more challenging compared to the old monolithic way. Logs, tracing

and metrics become more complicated and harder to manage.

Another aspect that has become harder to manage is security. In a typical

microservices architecture where a huge number of services communicate with

each other, security becomes a more challenging factor as the focus will change

from securing a single monolithic application or a set of finite few applications

in an SOA, to securing a large number of applications that heavily communicate

with each other to provide functionality [17]. Another security complexity is

network security; microservices communicate with each other over the network,

which adds the burden of network complexities and security to the plate [54].

1.7 The Lack of Research about Microservices Aspects

In the past years, both academia and practitioners helped explore, enhance and

research microservices systems and their aspects, driven by the highly industrial

adoption of it as an architectural style in enterprise and startup companies.

A lot of the underlying principles of microservices were thoroughly explored

by researchers, but the research on the microservices themselves and their chal-

lenges is still far behind its rapid development and the challenges of the industry

[62]. One of these challenges that attracted our attention is microservices secu-

rity.

20

In microservices, security expands across multiple layers. Starting from the

hardware layer, the cloud, communication, service, application as well as virtu-

alization and orchestration [62].

In their systematic mapping study, Alshuqayran at el. stated that microser-

vices systems security is an important challenge that is not well researched and

needs more attention [3]. Among these security aspects are authentication and

authorization. Our research focuses on this security aspect of authentication and

authorization in the microservices architecture.

1.8 Available schemes for Authentication and Authoriza-

tion

In microservice, there are multiple approaches to achieve authentication/authorization;

centralized and decentralized:

• Centralized authentication - centralized authorization: Where a central

point in the microservices architecture is responsible for authenticating

and authorizing the API calls to the system.

A simple example of centralized authentication - centralized authorization

in a microservices architecture is to apply both authentication and autho-

rization at the API gateway level only, any request that passes the API

gateway will be authenticated and authorized before making its way to

the destination microservice.

• Centralized authentication - decentralized authorization: Where authenti-

cation is the responsibility of a central point in the system while authoriza-

tion is delegated to the requested microservice itself.

An example of centralized authentication - decentralized authorization is

21

to apply authentication at the main entrance point of the microservices ar-

chitecture; the API gateway while leaving the authorization checks at the

microservices edges.

• Decentralized authentication - decentralized authorization: Where both

authentication and authorization are left to the targeted microservice to

handle in a decentralized fashion.

An example of decentralized authentication - decentralized authorization

in a microservices architecture is to apply both authentication and autho-

rization at the microservice level, with no checks applied at a central point

like the API gateway. In this case, the trust boundaries of the system are

totally pushed inward to the microservice perimeter.

Each of these approaches are used to build microservices applications, the deci-

sion of which of these approaches is the best to pick depends on the nature of

the application and the complexity of its provided functionalities. In the next

chapters, we explain that the last approach is the most secured one in terms of

security principles adoption and its fulfilment of the fundamental set of security

requirements for a microservices architecture.

1.9 Research Objectives and Problem Statement

In this research, we are aiming to answer the following questions:

1. What are the security factors that would be used to apply the authentica-

tion and fine-grained authorization for systems that are deployed based

on a microservices architecture?

22

2. What are the characteristics of a security framework that best suits security

requirements of a microservices architecture in terms of authentication and

fine-grained authorization?

3. What are the performance implications of the security framework in terms

of latency overhead within the context of a microservices architecture that

is based on HTTP RESTful API’s?

1.10 Summary of contributions

The main contributions of the research:

• Determining the best architectural style for applying authentication and

fine-grained authorization in a microservices system taking into consider-

ation a proposed set of microservices security requirements.

• Proposing a new security framework for authentication and fine-grained

authorization in a microservice based system.

• Proposing and conducting an experiment to measure the performance im-

plications for the proposed security framework which will contribute for

generalizing our approach so it can be applied for similar microservices

cases.

In this thesis, we performed the following activities:

• Conducted a literature review and studied the related work in the field.

• Identified the application authentication and fine-grained authorization

security goals for microservices architecture and identified the set of se-

curity requirements associated with these goals.

23

• Proposed a new security framework that fulfills these security require-

ments. Conducted a threat model analysis using the STRIDE threat frame-

work to identify the potential threats and their risk reduction strategies.

We used these strategies to enrich our security framework requirements.

• In order to prove the effectiveness of our framework, we applied an indus-

trial motivating use case to our security framework (the Applicant Track-

ing System).

• Applied the proposed security framework to the industrial use case.

• Proved that our framework achieves the designed set of security require-

ments.

• Conducted an experiment and studied the performance implications for

the proposed security framework.

1.11 Structure of this thesis

Chapter 2 discusses the main concepts around microservices security. It gives

the reader a background about access control models, security tokens platforms,

fine-grained authorization frameworks and security techniques we will use in

our research. Chapter 3 discusses literature and state-of-the-art in microservices

authentication and fine-grained authorization. We identify the main security

goals in microservices application security. Finally, we highlight the limitations

in the current practices. In chapter 4, we discuss the microservices security

framework for authentication and fine-grained authorization and the industrial

motivating use case. Chapter 5 outlines the research methodology that will be

followed to generate, collect and analyze data. It also discusses the experimental

24

design. Chapter 6 describes the security framework implementation technolo-

gies and provides a demonstration of the security framework effectiveness. It

also includes experiment evaluation and statistical analysis. In chapter 7, we

discuss the key findings of our research and compare our work with the current

state-of-the-art. In the final chapter, we provide a conclusion, future work and

threats to validity.

25

Chapter 2

Background

In this chapter we discuss some concepts around microservices security that we

will use throughout the study. We start by defining the well known access con-

trol models. After that, We give a brief description about the security token

platforms. Because our research focuses on fine-grained authorization, we will

explain to the user two fine-grained authorization frameworks that are used and

well known in the industry, the “eXtensible Access Control Markup Language

(XACML)” and the “Open Policy Agent (OPA|)”. We finish the chapter by giv-

ing a background about two important security techniques we will use in our

security framework, the sidecar for endpoint security and the usage of multiple

trust domains.

2.1 Access Control Models

Many access control models have been developed across the past decades. The

basic idea behind them is to restrict and organize access to the system infor-

mation. In this section, we will discuss the major access control models: The

Mandatory Access Control (MAC), The Discretionary Access Control (DAC),

26

The Role-Based Access Control (RBAC) and The Attribute-Based Access Con-

trol(ABAC) [26, 30]. All of these access control models are meant to provide

authorization. Authorization can be divided into two main categories; coarse-

grained and fine-grained. An example of a coarse-grained authorization is to

allow a user from a certain group or who have a certain role to perform an ac-

tion. An example of a fine-grained authorization is to allow a user to perform a

specific action on a specific object constrained by a specific condition.

2.1.1 Mandatory Access Control (MAC)

MAC is mainly concerned with data confidentiality where access is given based

on security labels. Policies are used in MAC to make a decision based on a pre-

vious set of configurations. MAC is usually controlled by a security policy ad-

ministrator. Each user can be given explicit access to specific resources. In MAC,

it is difficult to change accesses to reflect the changes in data and user accesses.

MAC has been historically used in government and military applications.

A simple example of MAC will be in a government agency where security

labels will be attached to all objects along with its classification information and

each user will be given a clearance to what she can access.

2.1.2 Discretionary Access Control (DAC)

DAC is a traditional access control that allows users to control the access to their

data. It allows access based on user identity, so it manages who can access what.

It also deals with permission inheritance and auditing. By using DAC, the sys-

tem can provide flexibility by maintaining a database of user identities and their

permissions.

27

Relying on users defined accesses holds its risk. If there is a simple configura-

tion mistake, wrong people may have access to certain data that they shouldn’t

have access to.

An example of DAC is adding, deleting or modifying permissions of a file

on a Windows machine by its owner. At the discretion of the file owner, she can

assign various permissions for different types of users.

2.1.3 Role-Based Access Control (RBAC)

In RBAC, users are assigned roles. Based on these roles, the user access is de-

fined. The role can be expressed as a set of permissions that relate to a subject.

Users can be assigned multiple roles at the same time. If an intruder got access

on behalf of a user, the intruder access will be bound to that user access, she will

not have access to the whole system.

A simple example of RBAC will be in an organization that consists of multi-

ple departments. The system administrator can define a group for each depart-

ment, if a new hire is on-boarded in the Human Resources (HR) department for

example, the system administrator can add the new user to the HR group where

she will inherit all the access and permissions assigned to this group.

2.1.4 Attribute based Access Control (ABAC)

ABAC added the dimension of request attributes. ABAC works with authen-

tication, authorization and accountability. When the user requests an access to

a resource, the access is controlled based on the request attributes, the user ac-

cess and the destination resource. ABAC provides better security and flexibility

compared to its predecessors. ABAC provides a hierarchical structure for per-

missions as well.

28

An example of ABAC is to limit the access of a specific website to a subset

of users who have the HR role. This can be achieved by defining the website as

an attribute, and only assigning this value to the specific users who will have

access to it.

In this study, we focus on ABAC since it provides the concept of policies that

can express complex rules and present more advanced scenarios and use cases

compared to its predecessors: RBAC, DAC and MAC.

2.2 Security Tokens Platforms

In a microservice system, different application entities establish trust between

each other by exchanging security tokens. Security token is usually issued by a

trusted third party. When exchanging these tokens, cryptography is considered

a basic building block both in the communication channels, by using Transport

Layer Security (TLS) and within the generated token itself [24].

In this section, we discuss a set of token platforms: API keys, Open Autho-

rization (OAuth2), OpenID Connect and JSON Web Tokens (JWT).

2.2.1 API Keys

An API keys is a simple encrypted token. It is used to call an API that does not

involve user private data. API keys are usually used for clients who do not have

a backend side such as web browsers and mobile applications. They are usually

embedded within the application itself. The API key is used to track the requests

generated from the client as a base of identification. Figure 2.1 shows the basic

API Key usage scenario.

29

FIGURE 2.1: API Key Usage Overview

An important limitation of the API Keys is that they do not identify the user

or the application who is making the request. The validation step only involves

checking the validity of the issued API Key. If an attacker acquired the API Key,

she can simply use it on behalf of the legitimate application. This is the main

reason why API Keys are not recommended for authorization purposes.

2.2.2 Open Authorization (OAuth2)

Open Authorization (OAuth and the latest version of it OAuth2) is an industry

standard protocol for authorization [43]. It focuses on the development simplic-

ity in its flows. OAuth2 can be used in web applications, mobile applications

and desktop applications as well. OAuth2 and its specification is developed by

IETF OAuth Working Group [23] and defined in the RFC 6749 [21]. OAuth2 al-

lows third party applications to have a limited scoped access to a resource on

the owners’ behalf. This is usually referred to as “access delegation”.

OAuth2 defines four main roles:

• Resource Owner: the one who owns the resource.

• Resource Server: the server which hosts the protected data.

• Client: the application requesting access to the resource server.

30

• Authorization Server: the server which is responsible for issuing access

tokens to the clients. These tokens are used to access the resource server.

Figure 2.2 shows the basic OAuth2 flow.

FIGURE 2.2: Overview of OAuth2 Flow

There are multiple delegation grant types in OAuth2:

• The client credentials: usually used for authentication between systems

without the intervention of an end user.

• The resource owner password: This type of grant is suitable for trusted

applications. The resource owner credentials are sent to the client applica-

tion then to the authorization server to acquire an access token.

• Authorization code: this grant type is the appropriate one for end-user

involvement, it allows to acquire a long lived access token on behalf of the

resource owner.

31

• Implicit grant: similar to authorization code but it does not involve the

step of getting an authorization code before acquiring an access token.

This is why implicit grant type is not recommended. It allows access token

leakage and access token replay.

• Refresh token: used to renew the expired access token.

2.2.3 OpenID Connect

OpenID Connect is an identity layer that can be added on the top of OAuth2

to provide identity of the end user. OpenID Connect uses the concept of ID

token, which is a JSON web tokens (JWT) that contains the authenticated user

information.

The usage of OAuth2 and OpenID Connect usually involve acquiring a sin-

gle token from an authorization server. This token can be used to access different

services and components on behalf of the user.

2.2.4 JSON Web Tokens (JWT)

JSON Web Token (JWT) is an internet standard defined in the RFC7519 [27]. It

can be defined as a container that holds certain assertions from one place to

another. The assertion is a valid strong statement issued by a trusted entity.

JWTs are signed by the issuer private key and base64 encoded. Any receiver of

a JWT can check its validity and decide whether to accept it or not.

The JSON Web Tokens has three main parts:

• The JOSE (JSON Object Signing and Encryption) header, which contains

the metadata of the token, such as the algorithm used to sign the message.

32

• The payload, which carries a set of claims, such as the subject, audience,

the time of expiration and the time when the token was issued.

• The signature, which is used to validate the token.

Figure 2.3 shows an JWT example for an encoded token and its decoded

counterpart.

FIGURE 2.3: JWT Example

2.3 Fine-Grained Authorization Frameworks

In this section, we provide the main differences between a fine-grained and

a coarse-grained authotization. Then we give a brief description of two well-

known fine-grained authorization framework. The first is the XACML standard

and the second is a promising modern framework, Open Policy Agent (OPA).

33

2.3.1 Comparison between Fine-grained authorization and Coarse-grained

authorization

Granularity is defined as the quality of including a lot of small details [36]. It

also refers to the extent a system is composed of distinguishable entities.

In his book "Guide to Computer Network Security", Kizza defined autho-

rization granularity as the level of details that is required from an authorization

entity to limit and separate privileges [29]. Coarse grained systems consist of

few, large components, while fine grained systems consist of much more com-

ponents of smaller sizes.

Authorization granularity has two main categories, coarse grained and fine

grained. A clear distinguish between these two main categories is that coarse

grained authorization policies can be very simple; as simple as “all or noth-

ing”. While fine grained authorization policies provides the ability to distin-

guish among different entities and resources and can be much more complex

compared to their coarse grained counterpart [22].

Coarse grained granularity only offers a basic ability to interact with system

resources, all lower details within these resources functions are ignored. On the

other hand, fine grained granularity provides very specific individual interac-

tions to the defined tasks within the system resources.

We will illustrate this difference by an example, allowing only users of a

certain group to perform a privileged functionality is an example of a coarse

grained access authorization. While allowing an individual user to perform a

specific action on a specified object is an example of a fine grained access autho-

rization.

34

A real manifestation of a granularity example is as follows; suppose we have

a system (applicant tracking system) where job seekers apply to opening jobs to

be hired. Allowing a group of users (recruiters) to screen job seekers who ap-

plied to their opening jobs is a coarse grained access authorization example.

Only allowing recruiters to screen job seekers within their department and re-

stricting this screening activity within their working hours is an example of a

fine grained access authorization.

2.3.2 The eXtensible Access Control Markup Language (XACML)

XACML is a security standard offered by OASIS back in 2003 [48]. XACML uses

XML for defining policies and enforcing them. XACML is used for fine-grained,

attribute-based access control. XACML standard contains multiple points, each

of them has a specific functionality in the flow. The main points are Policy Deci-

sion Point (PDP), Policy Enforcement Point (PEP), Policy Administration Point

(PAP) and Policy Information Point (PIP). Figure 2.4 shows the main data flow

in XACML.

The Policy Decision Point (PDP) is responsible for evaluating the incoming

requests, it compares the XACML request with its corresponding policy and

returns a response for the caller. The Policy Enforcement Point (PEP) acts like a

guardian to the resources. It asks the PDP for the authorization decision in order

to allow or deny the request. Policy Administration Point (PAP) is where policies

can be written and managed. It is also responsible for delivering these policies

to the PDP. Policy Information Point (PIP) is the system entity responsible for

providing attribute values for other points.

35

FIGURE 2.4: XACML Data Flow Model

2.3.3 Open Policy Agent (OPA)

A new emerging authorization framework is the Open Policy Agent (OPA) [44].

It is a Cloud Native Computing Foundation (CNCF) incubating project. OPA

defines itself as an open source, general purpose policy engine mainly focused

on policy enforcement.

OPA provides a high level declarative language (Rego) and simple APIs to

offload the policy decision point from the application services. Its design is a

good fit for cloud services and microservices.

36

OPA capabilities are similar to XACML, in which it has a Policy Decision

Point (PDP) and a Policy Enforcement Point (PEP) as well as Policy Administra-

tion Point (PAP). One of the core principles of OPA is to decouple the PDP from

the PEP. The software can query OPA and supply the appropriate data struc-

tures as input to the engine. The engine will generate a decision by leveraging

the query, policies and data. Figure 2.5 depicts this flow.

FIGURE 2.5: Open Policy Agent (OPA) Data Flow Model

2.4 Emerging Security Techniques

In this section, we describe two security emerging techniques we that use and

address in our study, the sidecar for endpoint security pattern and the usage of

multiple trust domains.

2.4.1 Sidecar for Endpoint Security

With the increasing adoption of cloud solutions, the need for security principles

increases, among these adopted principles are the “zero trust network” and the

37

“least privilege” principles. The zero trust network basically implies that never

trust the network, either internal or external and always verify. The “least priv-

ilege” states that systems should not give any resource more permissions than

needed. Each job should be assigned the minimal set of permissions, no more.

These two principles will be a good guidance for our security decisions along

the way.

Sidecars for security is an emerging security technique that enforces these

principles at every microservice endpoint. The sidecar is a process or a con-

tainer running alongside the resource microservice. It can intercept the incom-

ing traffic to the resource microservice and act like a policy enforcement point

(PEP). Open Policy Agent (OPA) and Envoy are popular frameworks that can be

deployed as a security sidecar.

2.4.2 Multiple Trust Domains

Multiple trust domains can be found in many microservices systems. These trust

domains can be defined on the basis of the teams they are managing them, or

on the basis of governance issues or even organizational boundaries. The larger

and more complex the microservices system, the chances to find multiple trust

domains are more likely.

From a security perspective, multiple trust domains mean multiple autho-

rization servers. The microservices in the same trust domain trust security to-

kens generated by its authorization server. When a microservice wants to com-

municate with another microservice in a different trust domain, it needs to ac-

quire a security token that is trusted by the second domain before initiating the

call.

38

One of the big advantages of using different trust domains is to minimize

the effect of token theft. Each security token can only access one trust domain.

The security token will be considered invalid if it used outside its original trust

domain. This basically means, if a token is stolen, the attacker can gain access

only to the resources belongs to the trust domain who generated the access to-

ken and not to the entire system. Tokens that have access to the entire system

without any limits are usually called “powerful tokens”.

2.5 Connecting the Dots

On one hand, having such a wide set of access models, security tokens platforms

and standards provide a wide set of choices for developers and architects to

build systems with high quality. On the other hand, some of these tools is more

appropriate than others.

Microservices tend to offer fine-grained APIs for greater reusability across

the system [62], these APIs need a corresponding fine-grained authorization

framework that protects the resources and data provided by these APIs. This

explains the push toward ABAC access model more than RBAC or the tradi-

tional old models of MAC and DAC.

When talking about security tokens, most companies seek the use of the

defacto standard OAuth2 rather than using a proprietary security framework.

OAuth2 has a lot of support and a wide set of implementations across different

programming languages and frameworks. Following a well known standard

eases the integration between microservices system and other systems as well

as with external clients.

39

OAuth2 works well for authentication along with static and coarse-grained

authorization purposes. The fast advances of business needs and the push for

more security controls created the need for a more fine-grained authorization

framework. This is where XACML and OPA play a great role. These frameworks

can be integrated in a microservices system on top of OAuth2 to provide a fine-

grained access control. Despite that XACML is a well known, relatively old and

mature standard, it does not see a wide adoption in the industry. On the other

hand, OPA seems a more promising authorization platform that is built from

ground up to help modern applications secure their applications in an easy and

efficient way.

In our research, we focus on the ABAC access control model. We use OAuth2

and JWT as a way of exchanging and verifying security tokens with OPA for

more advanced fine-grained authorization.

2.6 Summary

In this chapter, we discussed the main concepts of microservices security, start-

ing from access control models, security token platforms to fine-grained autho-

rization frameworks. In the next chapter, we conduct a thorough literature re-

view and study the microservices and their security aspects in literature. During

this critical review, we identify a set of security goals for microservices security.

We follow that by a set of existing security frameworks that handle authentica-

tion and fine-grained authorization, their strengths and their weaknesses.

40

Chapter 3

Literature Review

In this chapter, we conduct a thorough literature review where we discuss mi-

croservices and their security aspects found in literature. We explore a set of

high level, strategic security goals that researchers focused on to address mi-

croservices security challenges. We finish the chapter by discussing three exist-

ing security frameworks that target authentication and fine-grained authoriza-

tion security in microservices, their strengths and weaknesses. We compare each

of these frameworks with the security goals identified previously.

3.1 Microservices in Literature

Since the early show of the microservices, researchers kept an eye on its indus-

trial advances and added their touch to its state-of-the-art. Many researchers

focused on the techniques, best practices and lessons learned from transforming

monolithic applications into a microservices based architecture [12, 35, 18, 58].

Other aspects that brought the attention of the researchers includes resource

management, service composition, data management, portability and security

[15].

41

Since we are focusing on security aspects of microservices, the next section

discusses the microservices security in literature. What are the security dimen-

sions and layers the researchers focused on.

3.2 Microservices Security in Literature

In their research, Dragoni at. el. discussed the challenges microservices intro-

duced due to their open nature [16]. The promotion of services reuse enabled

developers and application builders to integrate with third party services added

a set of new challenges. One of these challenges is to provide proper authenti-

cation and authorization for the microservices system.

Nehme at. el. also discussed the openness nature of microservices and the

trust challenges caused by this [39]. They discussed microservices security from

multiple dimensions: microservices components, application architecture, se-

curing infrastructures in terms of operating systems, network and securing ex-

ternal interfaces for interdomain communication. They stated that every mi-

croservice should be treated as an independent component which has its own

security measures and can not be trusted by other parties.

In literature, microservices security has many categories. Each of them has

its own choices and decisions. Yarygina al. el. proposed a hierarchical decom-

position for these security layers [62].

The first layer is the hardware layer, it takes care of the security modules at

the hardware level. The second layer is the virtualization layer, where security

aspects of isolation and sharing of libraries and hardware caches are addressed.

42

The next layer is the cloud layer, which discusses the security issues of the

hypervisors and the various remote attacks. The fourth layer is the network

layer, it addresses the standard communication protocols, such as TLS as well

as security integration styles. The fifth layer is the Service/Application layer,

which discusses security issues of error handling, input validation, protection

for data at rest and programming languages security vulnerabilities. The last

layer is the orchestration layer, where security issues of services discovery and

registry are addressed.

Security is a crucial aspect in software development, insecure applications

put critical infrastructures at risk. With the latest advances of web application

development and the advantages developers and companies are gaining from

cloud solutions and services, more complex and connected software solutions

are being introduced. These advances made application security a difficult task

to achieve and maintain. Modern application security requires awareness, pro-

tection against common security risks and the ability to discover and resolve

these risks in a quick and efficient manner.

3.3 Microservices Security Goals

Microservices architecture has a lot of security challenges. Some of these chal-

lenges are certainly not new, they were introduced and discussed in SOA. While

some of these challenges still apply to an exact extent in microservices, other

security challenges become more complex given the characteristics of the mi-

croservices. In this section, we will discuss the security goals researchers focused

on to address different microservices security challenges. These goals are high

level, strategic goals which our system should achieve [57]. In chapter 5, we

return to these goals and derive from them both requirements and assumptions.

43

3.3.1 Defend the Greater Attack Surface

In a monolithic application, a single host contains the entire application. The

attack surface in such a system is limited and contained within the perimeter of

its operating system and the security concerns will be focused on this singular

point. While in microservices, where the application is split into many services

that communicate to each other using APIs, independently from the microser-

vices internals and even programming languages, a more broader attack surface

is introduced. In addition to that, the openness nature of microservices and their

need to communicate with each other as well as with the outside world. This

became a game changer for microservices where they increase the need for more

advanced security solutions that are more suitable to the newly introduced chal-

lenges [16].

In a microservices system, the attack surface can be divided into two main

parts, the system boundary or the outside perimeter and each microservice bound-

ary. The system boundary defence were discussed by Jander at. el. [25]. They

stated that the system tries to protect itself from the unwanted outsider actions.

The microservices architecture enlarges this perimeter and made it harder to

monitor, manage and secure. This attention to the great perimeter sometimes

implies that security of the individual microservices is underestimated or even

neglected.

In their research Yarygina at el discussed the redefinition of the security

perimeter [62]. They explained that microservices redefined this perimeter and

pushed it inward toward the boundaries of each microservice.

44

In order to achieve our goal of defending the greater attack service of mi-

croservices, we explored the literature for the best security principles to adapt.

Among these principles is the “Defence in Depth” principle.

Defence in depth implies the concept of adding multiple security mecha-

nisms on the different levels of the system. In order to do this, security checks

are applied at each microservice level instead of having them at a central place

of the system, like the API Gateway.

3.3.2 Handle Network and Communication Complexity

Decomposing a monolithic application into microservices can easily result in the

creation of hundreds of microservices. A good example of this is Netflix [59],

where the decomposition of their monolithic application resulted in the creation

of hundreds of microservices.

These microservices still need to communicate with each other, exchange in-

formation and share states. This introduced a lot of complexities on the network

layer and added complexities to handle network failures, debugging and audit-

ing. The increase of such complexities opened a new opportunities for attackers

to perform attacks against the system [2].

Traditional communication attacks like eavesdropping and man in the mid-

dle attack (MITMA) are examples of common attacks in microservices. In or-

der to build a secure authentication/fine-authorization framework. We need to

make sure the underlying network and communication layer is secure. In order

to do so, we will use the standard protocols of Transport Layer Security (TLS)

and Mutual Transport Layer Security (mTLS) will be used.

45

Mutual authentication or two-way authentication is a solution that aims to

establish trust between the two parties. In our case, between two microservices.

By default, TLS only one way, where the client can prove the identity of the

server. TLS also offers client to server authentication using clients certificate

[56]. Client certificates requires certificates provisioning and involve less user

friendly experience, so it is usually avoided to be used in applications. In mTLS,

each of the parties can prove the authenticity of the other side. mTLS prevents

replay and man in the middle attacks [55].

There are multiple solutions that eases the use and management of mTLS

in a microservices architecture, docker swarm [34] and the Secure Production

Identity Framework for Everyone (SPIFFE) [52] are good examples.

3.3.3 Establish Trust between Microservices

In the early stages of microservices, software engineers tend to neglect the se-

curity concerns of the inter-communication between the different microservices.

Microservices are usually designed to trust each other in an open way. This

practice imposes big security risks, such as confused deputy attack, where the

attacker gaines illegitimate access to one of the microservices, then uses its priv-

ileges to access the resources of other microservices claiming the identity of the

compromised microservice. In a system with open trust, this may result in a

compromise at the overall all system level.

The attacker can hold multiple identities. On one hand, she may be an ex-

ternal actor who is trying to gain illegitimate access to the system. On the other

hand, she may be an insider who is abusing her privileges to gain sensitive in-

formation or control other microservices [54].

46

One of the principles we will adapt is the “Zero Trust” principle. Zero trust

implies that the security paradigms should move from the system boundaries

inside toward the individual microservices and resources. A zero trust archi-

tecture implies that no implicit trust should be granted to any resource in the

system [50].

In order to establish trust between microservices, we will use security tokens

in our framework. When using security tokens, microservices can establish trust

with another internal microservice or with an external actor by exchanging secu-

rity tokens. These tokens are usually generated by a third trusted party. Security

tokens can be classified into two main categories; traditional and modern web

tokens.

Web sessions are a form of traditional security tokens. Web sessions have

been used for a long time, mainly as a proxy for user authentication. When a

user identifies herself to the system, by providing her username and password,

the system grants a session token that the browser can save and send in subse-

quent requests as a means of user authentication.

Web sessions come with a security cost, they have known limitations that can

exploited by attackers such as session hijacking and cross-site request forgery

[14]. Because sessions act like a powerful token, If an attacker acquires a valid

user session, she will be able to do all the actions granted to that user within the

system.

The new modern security tokens are more API centric, simple to adapt, im-

plement and mostly JSON based. Modern frameworks overcome old security

47

issues by establishing a new approach to handle security. Some of these prac-

tices are the avoidance of using the password as a powerful primary authenti-

cation factor, decoupling application functionality from security authentication

and authorization and the use of short lived security tokens.

These modern tokens are widely used as a means of authentication and au-

thorization for both applications and users. API keys, OAuth2, OpenID Connect

and JWT are the main modern platforms used for this purpose [37].

In the next section, we study the existing security frameworks suggested and

implemented by researchers in the field of microservices security to solve for

authentication and fine-grained authorization. This is followed by identifying

the gaps and limitations of these current practices.

3.4 Authentication/Fine-Grained Authorization Security Frame-

works

In this section we discuss three proposed security frameworks, which targeted

authentication and fine-grained authorization security in microservices. We com-

pare each of them with the security goals identified previously. We also discuss

the limitations of these frameworks.

Yarygina at. el. discussed the unique landscape of microservices and the

emerging security practices in the field [62]. They suggested a security frame-

work that suits a microservices based architecture. The framework relied on the

use of a certificate authority for mTLS and a reverse security token service to

issue security tokens per user request. The authors tested their proposed frame-

work against a toy microservices-based system (MicroBank).

48

To defend greater attack surface of their system, the authors adapted the

defence in depth by redefining the perimeter security.

They also used mTLS and principal propagation to achieve trust between

microservices and handle network security complexities. They suggested the

use of a new JWT per request. Generating a security token per request can be

overwhelming from a performance perspective. The authors stated that their

security solution degraded the overall system performance by 11%, 4% for the

mTLS usage and 7% for the use of security tokens. In their suggested model,

the usage of the security tokens were barely for authentication purposes. The

solution lacks the real existence of a fine grained authorization.

The second framework we want to mention was suggested by Davy Preuve-

neers and Wouter Joosen. They suggested a security framework to handle the

issue of delegated fine-grained authorization policy in a microservice based sys-

tem [46]. The authors investigated a microservices based data processing work-

flow (a healthcare system) from a dynamic authorization point of view. How

microservices can collaboratively contribute to answer an authorization data de-

cision achieving a good level of application security and forbidding illegitimate

access from gaining access to the system.

In order to achieve this, the authors depended on two microservices basic

elements: feature toggles and circuit breakers. Feature toggles enables the grad-

ual integration of new features into the system. While circuit breakers aim to

protect system workflows from unauthorized access.

49

The authors did not discuss the issue of greater surface attack. But the appli-

ance of security authorizations check at every microservice endpoint implicitly

implies that their model is a defence in depth enabled model.

Network and communication where out of the focus of their study as well.

The authors only discussed the security authorization policies and their abil-

ity to be evaluated in a distributed manner. They adapted the least privilege

principle. When a microservice wants to make an authorization decision that

needs the involvement of other microservices. It asks these services to evaluate

their part of the policy, without the need to access or pull the original data from

these participant microservices. This enabled a distributed policy evaluation

with minimal data exposure.

In order to achieve a fine-grained authorization system, the authors used

their own simplified version of XACML [46]. The authors stated that using

XACML is complex, so they introduced a lightweight XACML policy language

for authorization policy definition. The lightweight policy language was based

on JSON instead of XML, it leveraged only a subset of the feature set in XACML

with both simplifications and limitations. They dropped policy targets and pol-

icy composition to more simplify their prototype framework.

The use of XACML introduces complexities to the system in order of defin-

ing and managing policies. The authors attempt to introduce a new abstracted

lightweight version can not be generalized to be used on a wide scale due to its

prototyping nature, lack of support and limitations.

50

The third security framework was proposed by Nehme at el. that targets

key security challenges of microservices [38]. They focused on providing a fine-

grained authorization framework by using both OAuth2 and XACML. The au-

thors didn’t discuss the perimeter defence explicitly. But the usage of a local

API Gateway at the front of each resource microservice implies the adoption

of defence in depth principle. TLS were used to mitigate against network and

communication complexities. So their solution lacks the capability of the au-

thenticity check of the caller.

To establish trust between microservices, Nehme at el. used security tokens

in terms of OAuth tokens between the different internal and external calls. The

authors used an OAuth client for every pair of microservices. This basically

means the flow will return to the user for notification and consensus in each new

microservices integration. This can be overwhelming especially if the interacted

microservices are within the same trust boundaries. Our proposed solution will

take the multiple trust domains into consideration. It will use the same security

token for microservices within the same trust boundary. This will minimize the

resource owner intervention for similar microservices and simplify system flows

without decreasing the overall system security.

3.5 Summary

In this chapter, we discussed microservices security in literature. We explored a

set of high level, strategic security goals that researchers focused on to address

microservices security challenges, and finished by discussing a set of existing

security platforms for microservices authentication and fine-grained authoriza-

tion. In the next chapter, we propose a new security framework that handles

51

authentication and fine-grained authorization in microservices and discuss its

details.

52

Chapter 4

Microservices Security Framework for Au-

thentication and Fine Grained Authoriza-

tion (MSFAA)

In this chapter, we propose our security framework and discuss its details. In

order to achieve this, we start by confirming that security is the main quality

attribute we are taking into consideration represented by the security require-

ments. We also focus on the performance of the proposed framework. The per-

formance of any proposed security solution should be taken as a crucial decid-

ing factor. Bad performing solutions are not practical and usually abandoned by

developers and practitioners. Taking the performance into consideration gives

our model more credibility. We evaluate the performance in terms of API la-

tency overhead against a proposed industrial motivating use-case; the Applicant

Tracking System (ATS).

Next, We define the functional requirements of the ATS, model the microser-

vices and design the REST APIs. This system represents our null-architecture.

53

After that, we design our security model and discuss its components. We

explain how our proposed security checks are applied to meet the security re-

quirements. Next, we add sequential diagrams to address the inner details of

the framework objects interactions.

4.1 Motivating Use Case, The Applicant Tracking System

(ATS)

Job seekers spend a lot of time navigating between different job boards, search-

ing for an appropriate job to apply for. Finding the correct job is like finding a

needle in a haystack. After finding a feasible job, the job seeker spends minutes

manually filling information before submitting the application. This process re-

peats each time the job seeker wants to apply for a new job, no matter if this is

the first time apply on this system, or its an old system that she used before.

On the other side of the system resides the businesses, businesses use Ap-

plicant Tracking System to receive job applications for their opening jobs. They

seek talent and best match job seekers. This involves manually navigating through

submitted resumes, categorizing and filtering applications, which take time and

effort and can be considered error prone.

This application is a type of “Software as a Service” (SaaS) and is a typical fit

for microservices architecture. Using a microservice architecture to implement

this type of application provides it with the necessary quality, scale, availability

and maintainability.

54

4.1.1 Functional Requirements

Table 4.1 shows the functional requirements for the Applicant Tracking System

(ATS).

TABLE 4.1: Applicant Tracking System (ATS) Functional Re-
quirements

ID Actor Functional Requirements
R1 Job Seeker Create account
R1 Job Seeker Enrich account using resume parse
R1 Employer Create account
R1 Employer Create payment subscription
R1 Employer Publish a job
R1 Job Seeker Apply for a job

Figure 4.1 shows the basic use cases for our motivating application.

4.1.2 Modeling Microservices

After the functional requirements were specified and the use cases were identi-

fied. The next step is to model our microservices. In this step, we grouped the

related functional requirements to form the bounded contexts. These bounded

contexts will define the microservices.

The system will contain three main microservices:

• The Account microservice: it will be responsible for job seeker registra-

tion, enriching job seeker profile by providing the resume parse function-

ality and the business registration.

• The Marketplace microservice: it will be responsible for the job lifecycle.

Publishing a new job by an employer will push it into the marketplace. Job

seekers can search and apply for existing jobs.

55

FIGURE 4.1: Applicant Tracking System (ATS) Use cases

• The Financial microservice: it will responsible for business subscriptions.

Employers can create a new subscription.

Figure 4.2 shows the basic architecture for the Applicant Tracking System

(ATS) (the null-architecture). Detailed description about the used symbols can

be found in Appendix A.

The architecture contains the following basic elements:

56

FIGURE 4.2: Applicant Tracking System Architecture (the null-
architecture)

• The client application: The ATS services are offered using a client applica-

tion. This application can be a web client or a mobile client (iOS, Android,

..).

• The API Gateway: Represents the entry point for external actors to the

system.

• Load Balancers: load balancers are used to distribute the incoming traffic

into the existing microservice instances. Load balancers enable horizontal

scalability for the application. This gives the microservice the advantage

57

of avoiding the single point of failure and enables it to increase throughput

in an efficient manner.

• The microservices: The application consists of three microservices as de-

scribed earlier; account, marketplace and financial microservices.

• The databases: each microservice has its own datastore, where it persist

its data in its own bounded context.

4.1.3 REST APIs Design

Table 4.2 shows the HTTP REST APIs that will be exposed by each of the mi-

croservices in our application.

4.2 Security Requirements and Assumptions

In this section, we will describe our security requirements and assumptions.

Those items under the responsibility of the system in our software-to-be will

form our requirements. While those items under the responsibility of the system

in the environment will form our assumptions [57].

4.2.1 Security Requirements

Following are the main security requirements, we use these requirements in the

design phase, each of them contributes to the security measures and checks that

we add to the proposed framework.

• SecurityRequirement-1: The system should have the capability of giving

its administrators controlled access by using policies. These policies are

fine grained (fine-grained access/defence in depth).

58

TABLE 4.2: Applicant Tracking System (ATS) REST API Design

HTTP
Method

API Signature Requirements Microservice

POST /users Register a new user Account
POST /businesses Register a new

business
Account

GET /users/id Get user profile details Account
POST /users/id/resume/parse Parse a resume for a

job seeker to enrich
profile

Account

GET /jobs Get available jobs to
apply for

Marketplace

POST /users/id/jobs/id/apply Job seeker applies for a
job

Marketplace

POST /businesses/id/jobs Create a new job for a
business

Marketplace

POST /businesses/id/jobs/id/publish Publish an existing job Marketplace
GET /businesses/id/jobs Get available jobs for a

business
Marketplace

GET /businesses/id/subscriptions Get active
subscriptions for a

business

Financial

POST /businesses/id/subscriptions Create a new
subscription for a

business

Financial

59

• SecurityRequirement-2: Accessing personal identifiable information needs

data owner approval. No personal data can be accessed without user ap-

proval and consent (fine-grained access/defence in depth).

• SecurityRequirement-3: Data exchange between services should be lim-

ited and follows a predefined rules for service consumption (zero trust/defence

in depth/).

• SecurityRequirement-4: Security as a non-functional requirement should

be treated as an aspect to the service itself. In other words, the security

concern should be handled separately from the application logic and the

typical functional requirements held by it.

• SecurityRequirement-5: Avoid the use of powerful tokens (zero trust/defence

in depth).

• SecurityRequirement-6: Mitigate against token theft attack (zero trust/defence

in depth).

4.2.2 Security Assumptions

Traditional security mechanisms that are out of the scope of authentication and

fine-grained authorization are considered out of the scope of our study. This

includes intrusion detection systems, intrusion prevention systems, encryptions

and security for data at rest.

4.3 The Security Model

In this section we describe our security model main service and describe each

service role in the overall model and how it contributes to the original security

60

requirements. We also show the security standards that we described in the

previous chapters which are used in our model.

4.3.1 Security Model Services

Our proposed framework consists of a group of fundamental security services

that need to be up and running. These services are:

• Certificate Authority Service.

• Authorization Server.

• API Gateway.

• Sidecar.

• Security Trust Domains.

We discuss each of these components main functionalities and how each of

them contributes to the security requirements.

4.3.1.1 The Certificate Authority Service (CA)

The CA is the first part of the suggested security model. It enables the mTLS

between the different microservices. The goal of this entity is to ensure a secure

communication between the different microservices and to enable the different

microservices to prove the authenticity of the other. The CA enables the system

to prevent both replay and man in the middle security attacks.

4.3.1.2 The Authorization Server

The Authorization Server is the second service in our model. Its main responsi-

bility is to generate OAuth2 security tokens in the form of JWT. These tokens are

61

temporal (short lived) and have a contained narrow access that is limited to one

security trust domain. In our use case, we will need two security token services,

one for each of the domains.

4.3.1.3 The API Gateway

Common models of microservices use API Gateways. From a security perspec-

tive, gateways have multiple advantages like security scanning, throttling, In-

trusion Detection System (IDS), Web Application Firewall (WAF).

In our model, the API Gateway acts as a main central entry point for external

parties, minimizing the microservice architecture attack surface. The API gate-

way will transform the opaque token received with the incoming request with

the corresponding JWT token. Any request received without a valid opaque

token will be rejected at the API Gateway level.

This way, the API Gateway will be able to globally validate each external

API call. If the system invalidated an access token, this token will be evicted

from the tokens cache and the API gateway will reject all requests holding that

token. The simple goal of the opaque token here is to hide the details of the

JWT from the external parties and to get a centralized place to manage external

parties calls to our system.

4.3.1.4 The Sidecar for endpoint Security

The sidecar is the fourth component in our security model, Security roles of the

sidecar are:

62

• Decouple the security as a non-functional requirement from other busi-

ness logic functional requirements that are contained and runned by the

microservice.

• Provide the ability to be configured, redeployed and managed without

interfering with the original microservice functionality in an ad-hoc style.

• Acts as a Policy Enforcement Point (PEP). Sidecars can check the security

tokens and apply a fine-grained authorization policies before passing the

requests to the resource microservice.

Benefits of using sidecar design pattern:

• One of the security requirements was to deal with the security as an as-

pect in our system. Which basically means that security implementation

should not be mixed with the applications logic that is maintained by the

microservice itself. A reusable and configurable sidecar gives us the ability

to deal with the service security with ease and simplicity. Configurations

and policies can be added, changed and removed without affecting the

microservice itself.

• The sidecar should behave as a single entry point to the microservice. This

will give us the ability to apply our security measures on a central point

with the guarantee that no access will be performed on the microservice

without the intervention of the sidecar.

• Applying a sidecar for security maximizes portability. With better porta-

bility the value of the design increases.

63

Figure 4.3 shows a typical microservice with a sidecar running in front of

it. All incoming calls are intercepted by the sidecar first, then passed to the

destination resource.

FIGURE 4.3: Microservice with a Sidecar Overview

4.3.1.5 Security Trust Domains

In section 2.4.2, we explained the need for defining multiple trust boundaries.

The use of security trust boundary is a fundamental piece in our model. It min-

imizes the effect of token theft and mitigate against the use of powerful tokens.

In our toy microservice system, there are two security trust domains. The first

one contains two microservice; the Account and the Marketplace services. The

other one contains the Financial microservice.

4.3.2 Security Standards

Our suggested security framework depends on existing security standards, fol-

lowing are the main security standards/frameworks we will use:

• Open Authorization (OAuth2).

64

• JSON Web Tokens (JWT).

• Open Policy Agent (OPA).

4.3.3 Security Model Architectural Diagrams

Figure 4.4 shows our the basic flow of a client accessing a microservice, the client

needs to acquire a valid OAuth2 token from the authorization server. Then it can

access the resource microservice using the acquired security token. The resource

microservice sidecar checks the validity of the token before allowing access to

the resource.

FIGURE 4.4: Client Accessing a Microservice Flow

Figure 4.5 shows a simplified view of our proposed security architecture for

microservices within the same domain.

Figure 4.6 shows an architectural diagram that contains all the security com-

ponents, the API Gateways, Authorization Servers, Sidecars and the two secu-

rity trust domains.

65

FIGURE 4.5: Security Framework Architecture for One Trust Do-
main

4.3.4 Security Checks and the Appliance of Security Requirements

After explaining the main services and providing the architectural diagrams of

the proposed security model. We discuss how these services achieve the security

requirements and what are the proposed security checks to achieve that. We

start by explaining the flow within the same trusted domain for both internal

and external API calls. Then we explain calls between different trusted domains.

For internal API calls (from a microservice to another microservice):

• For a microservice to call another one, it first needs to acquire an access

token from the authorization server. The authorization server will check

for the validity of the provided credentials as well as for the scope of the

requested token [SecurityRequirement-1][SecurityRequirement-3]

66

FIGURE 4.6: Security Framework Architecture for Multiple Trust
Domains

• After that, the caller microservice will use the acquired security token to

initiate a call to the resource microservice. After the request being received

67

by the microservice, the security sidecar will be the first responder to the

request [SecurityRequirement-4]. It will check for the authorization access

key. If it does not exist, it will return an unauthorized response to the

caller. If the authorization token exists. The sidecar will check the passed

JWT. The JWT will contain the scopes, subject identifier and the expiry

date [SecurityRequirement-2]. At this step, the JWT check is a basic check

only, the main purpose is to check that the subject is authenticated. The

fine-grained authorization part will be performed in the next step.

• The next check is the fine-grained authorization check, where the side-

car will query OPA and provide the user, action, method and path. OPA

will return the decision, this decision will be interpreted by the sidecar.

If the decision is permit, the request will be passed to the resource mi-

croservice. Otherwise, it will be rejected and the token will be invalidated

[SecurityRequirement-1].

For external API calls (from a client to a resource microservice):

• The first check will be performed by the API Gateway, where the check

for authorization header will be performed. If the header does not exist,

the API Gateway will return an unauthorized response to the caller. If the

authorization token exists, the API Gateway will check the validity of the

opaque token and replace it with a JWT.

• After this, the request will be forwarded from the API Gateway to the mi-

croservice, the same set of checks from the previous section (For internal

API calls) will be applied to the request.

Next, we explain the security checks between two different trusted domains.

For internal API calls (from a microservice to another microservice):

68

• Security tokens that are issued by an authorization server are only valid

within the trusted domain of the issuer authorization server. If a microser-

vice within a trusted domain wants to call another microservice in another

trusted domain, it needs to exchange its JWT with a new JWT from the

resource microservice authorization server that is trusted by the second

trusted domain API Gateway and resource microservice. Having an access

token trusted only by one trusted domain is a mitigation against the use of

powerful tokens[SecurityRequirement-5]. No single access key can access

the entire system. If a token was stolen by an attacker or by an intruder,

the token will only have access to the resources of the issuer authorization

server for a short period of time, which is typically set to one hour, the

token will expire after this time window passes [SecurityRequirement-6].

• Upon receiving this request, the resource (destination) microservice will

check the passed JWT that contains the scopes, subject identifier and the

expiry date. If it does not match its rules, the request will be rejected

[SecurityRequirement-3].

For external API calls (from a client to a resource microservice):

• The external client needs to acquire an access token per trusted domain.

Each token is expected to have different scopes and privileges. If this token

is stolen, it will be only valid for one trusted domain and for a limited

period of time (until the token expires or the theft is detected and the token

is invalidated) [SecurityRequirement-6].

4.3.5 Security Model Sequential Flows

In this section, we show the main sequential flows in our security framework.

Figure 4.7 shows the flow to acquire a new authorization token (access token).

69

Figure 4.8 shows the various security checks for a regular request originated

from a client application (i.e. web browser). Figure 4.9 shows the events when a

microservice in a domain needs to access a resource in different trusted domain

on behalf of a resource owner.

FIGURE 4.7: Acquiring Access Token Sequence Diagram

Figure 4.8 shows a sequence diagram for the security checks performed when

a client application (i.e. a web browser) accesses a resource microservice.

Figure 4.9 shows the sequence of events for a microservice to access another

microservice in a different trusted domain.

70

FIGURE 4.8: Security Checks for a Client Request Sequence Dia-
gram

71

FIGURE 4.9: Security Checks for a Microservice accesses another
Microservice in Different Trust Domain on behalf of a Client

72

4.4 Threat Model

In this section, we will explain our security threat model. Threat models help

identify potential security threats and their risk reduction strategies. In order

to generate our threat model, we followed a three phases process in which we

started by analysing the system requirements and creating a data flow diagram

(DFD). After that, we applied the STRIDE threat modeling framework to the

data flow diagram to find the potential issues. In the third phase, we applied

security controls to mitigate against the explored security issues.

The design phase was the starting point of our threat model. The security

framework requirements were described in detail in Security Requirements sec-

tion. Figure 4.10 shows the data flow diagram for our system. It shows a typical

microservices system with the basic processes involved. It also includes the pro-

cesses that represents the proposed security framework.

73

FIGURE 4.10: Threat Model Data Flow Diagram (DFD)

STRIDE is a threat modeling framework developed by Loren Kohnfelder and

Praerit Garg at Microsoft, the main goal of it is to identify various threat types

[33]. STRIDE examines these threats from the attacker perspective. IT is de-

signed to be used to discover security vulnerabilities in a software system [51].

STRIDE classifies threats into six main categories:

• Spoofing Identity: Where an attacker pretends to be somebody or some-

thing else.

74

• Tampering: Where an attacker modifies data without in a malicious unau-

thorized way.

• Repudiation: Where an attacker denies performing an action in which

other parties can neither confirm nor deny.

• Information Disclosure: Where an attacker is exposed to data which they

are not supposed to have access to.

• Denial of Service: Where an attacker tries to bring the system down to

deny or degrade the service to the legitimate users.

• Elevation of Privilege: Where an attacker gains an increased access which

she shouldn’t have.

We used STRIDE to identify potential threats then we applied a set of counter

measurements to mitigate against each of these threats (the fix phase). Following

are a description for each of these threats, its priority and counter measurements.

4.4.1 Threats and Counter measurements

In this section, we show the main set of security threats identified using STRIDE.

For each of these threats, we provide a description, a priority level, a category

that shows to which of the six STRIDE categories this threat belongs to and a

set of counter measurements that is implemented in our security framework to

mitigate against the identified threat. One point to mention is that we focused

on the authentication and fine-grained authorization aspects of the application

when mitigating against the identified set of threats, other mitigation techniques

that are out of the scope of authentication and fine-grained authorization were

not addressed in our study.

75

4.4.1.1 Network Threats

Sniffing or
eavesdropping

An attacker can use a packet sniffer to read the traffic
content of API calls between the user and the destination

microservice. This may happen outside the network
perimeters of the system if the calling user is an external

user. It can also happen when a microservice calls the
services of another microservice either in the same security

trust domain or in another one.
Priority High

Category Information disclosure
Counter measurement Encryption for data and security tokens in transit using

TLS is a counter measurement to this attack.

Man in the middle
attack

This attack happens when an attacker deceives the
downstream microservice claiming that it is a legitimate

host.
Priorit High

Category Spoofing
Counter measurements - The usage of encrypted security token generation

between the client and the authorization server mitigates
this attack.

- The usage of TLS encryption algorithm for
communications between the different parties

4.4.1.2 Host Threats

Threat Common host threats like footprinting, viruses, worms
and arbitrary code execution may result in an attacker

gaining an illegitimate access to a generated security token
that she can use to access unauthorized data.

Priority High
Category Elevation of privileges

Counter measurements Avoid the use of powerful tokens.
Generated access tokens are temporal and short lived for

only one hour.

76

4.4.1.3 Application Threats

Replay Attacks The attacker captures the user’s access token using a
sniffing or monitoring tool. Then she uses it to gain access

under the stolen identity.
Priority High

Category Spoofing
Counter measurements Encryption for data and security tokens in transit using

TLS is a counter measurement to this attack.
Generated access tokens are temporary and short lived,

although this countermeasure does not prevent the attack,
it narrows the time window that the attacker can use to

exploit the system.

Elevation of privilege In this attack, the attacker tries to elevate her privileges to
a more powerful account to gain more control over the

system.
Priority High

Category Elevation of privileges
Counter measurement The usage of a fine-grained authorization framework

enables the appliance of the least privilege principle.

Disclosure of
Confidential Data

This attack can happen if the application discloses
confidential or sensitive data to an unauthorized user.

Priority High
Category Information disclosure

Counter measurement The usage of a fine-grained authorization framework adds
checks to every microservice call before allowing the

operation to access the confidential data.

Data Tampering This attack occurs when an unauthorized attacker
modifies system data.

Priority High
Category Tampering

Counter measurement The usage of a fine-grained authorization framework adds
checks to every microservice call before allowing the

operation to edit data.

77

4.4.1.4 Parameter Manipulation

Security token
manipulation

security tokens are susceptible to modification. They are
exposed on the client side and can be manipulated by an

attacker.
Priority High

Category Tampering
Counter measurement Each access token is verified and checked in the

authentication process. JWT holds a signature that can be
used to check if the token was tampered or not.

4.5 Summary

In this chapter, we proposed a new security framework for microservices au-

thentication and fine-grained authorization. We discussed its security require-

ments, assumptions and flows. In the next chapter, we discuss our research

methodology and experimental design. We also discuss how we measure the

security framework performance.

78

Chapter 5

Methodology and Experimental Design

In this chapter, we explain our research methodology and the phases we fol-

lowed during the research experiment. After that, we present the base design of

our experiment. We start by explaining the research hypothesis, followed by a

description of the independent, dependent as well as the neutralized variables.

Finally, we show how we measured the performance of the proposed security

framework in terms of API latency overhead.

5.1 Research Methodology

In order to check to what degree our proposed security framework serves the

security requirements of a microservices architecture and to measure the perfor-

mance implications of this framework, we conducted an experiment in which

the workflow shown figure 5.1 will be applied. The workflow consists of four

major phases:

• Setup microservices environment and deploy the applications.

• Apply workload and generate results.

• Extract and combine data.

79

FIGURE 5.1: Experiment Workflow

• Compare and evaluate results.

In the first step, we need to define and design our proposed security frame-

work. This has been discussed in detail in chapter 4. Where we defined our

motivating use case; the Applicant Tracking System (ATS). We also defined our

null-architecture as well as our security framework services, components, ar-

chitectural diagrams, security requirements and checks. Next, we set up the

microservices, the security framework and deployed the applications.

In the second step, we applied the workload on both the null-architecture at

first. Then on the microservices architecture with the proposed security frame-

work applied to generate results. One of the basic workload techniques that

we followed to generate results is the linear workload, where we simulated an

increase in the amount of users who are accessing the service to generate the

results.

The main objective of applying the workload is to:

• Check the appliance and effectiveness of our proposed security checks

against the security requirements.

• Gather performance data in terms of latency overhead.

80

We combined the results in the third step. In the last phase we followed an

evaluation plan that consists of the following steps:

• Exploration: Different scenarios were presented and evaluated that shows

typical and non typical scenarios.

• Validation: A group of scenarios that were identified in the previous step

were validated. We focused on proving the these scenarios are repeatable,

generalizable and have a similar behavior for similar simulations.

• Comparison: In this step we compared the set of results against each other

to draw and extract results. The performance was measured in terms of

latency overhead.

5.2 Experiment Design

This section presents the base design of our experiment. It starts with the re-

search hypothesis, followed by a description of the independent, dependent as

well as the neutralized variables. As mentioned before, the main goal of this

experiment is to propose a security architecture for authentication and fine-

grained authorization in a microservices system, based on a set of predefined

security requirements. Then to study the impact of such proposal on the perfor-

mance of the architecture in terms of API latency overhead.

5.2.1 Research Hypothesis

We have two main hypotheses. The main goal is to support the alternative hy-

pothesis by rejecting the null hypothesis.

• Null hypothesis: There is no difference between the baseline architecture

(the null-architecture) and the proposed architecture with security checks

81

applied on effectively securing the system in terms of authentication and

fine-grained authorization.

The second null hypothesis: There is no difference between the baseline

architecture (the null-architecture) and the proposed architecture with se-

curity checks applied on the performance of the system (measured by API

latency overhead).

• The alternative hypothesis: There is a difference between the baseline ar-

chitecture (the null-architecture) and the proposed architecture with secu-

rity checks applied on effectively securing the system in terms of authen-

tication and fine-grained authorization.

The second alternative hypothesis will be: There is a difference between

the baseline architecture (the null-architecture) and the proposed architec-

ture with security checks applied on the performance of the system (mea-

sured by API latency overhead).

5.2.2 Dependent Variable

As we focus on security, securing the system in terms of authentication and fine

grained authorization by the applied proposed security checks will be our de-

pendent variable. We are also focusing on performance. The performance of the

applied security model measured by the API latency overhead will also be a de-

pendent variable in this experiment. The API latency overhead is a continuous

variable and we will measure its values in milliseconds.

5.2.3 Independent Variables

In our experiment we have two independent variables, the security framework

and security trust domains. The security framework is a binary categorical

82

variable with the values of either with-security framework applied or without-

security framework applied. The second independent variable is the security

trust domains, which is also a categorical variable that has a value of one global

domain or more. In our experiment, we looked into a system that has one global

domain or two security domains. The behavior of the systems that have more

than two security domains is just like the system with two security domains in

terms of security framework appliance and impact.

Combining the two independent variables will give us four treatment groups.

• Without the security framework on one security domain.

• With the security framework on one security domain.

• Without the security framework on two security domains.

• With the security framework on two security domains.

Each subject in our experiment will be a simulated user API that is originated

by the Apache JMeter. With this setup, we have a completely randomized design

since each subject is assigned randomly to a group. Another point to mention is

that each subject will receive only one level of the experimental treatment. No

simulated users will be shared between the different treatments.

5.2.4 Neutralized Variables

There are many variables that might affect the results of our experiment. To

make our results valid, these variables have to be neutralized and controlled as

much as possible. We can categorize these variables into four categories:

83

1. The infrastructure layer (the hardware layer).

• Variable: Operating System

• Value: Amazon Linux 2

• Rationales: Amazon Linux 2 is based on Linux kernel 4.14 and tuned

for optimal performance on Amazon EC2. It provides a secure, sta-

ble, and high performance execution environment to develop and run

cloud and enterprise applications [8]. We used Amazon Linux 2 as the

operating system of the microservices in our experiment.

2. The virtualization layer.

• Variable: Server

• Value: AWS EC2

• Rationales: We used Amazon Web Services in our experiment. AWS

provides reliable, scalable and inexpensive cloud computing services.

It is also a leader in public cloud services [9]. Using AWS added more

control and transparency on the server resources we used.

• Variable: Server Resources - Memory

• Value: 1 GB RAM, 2 GB RAM

• Rationales: All of our microservices had 1 GB of RAM while the

Apache JMeter was configured on an EC2 server with 2 GB of RAM to

have more power and available resources than the downstream mi-

croservices.

84

• Variable: Server Resources - Disk space

• Value: 8 GB EBS(Amazon Elastic Block Store).

• Rationales: EBS is an easy to use block store service provided by

AWS. It is natively supported with Amazon Elastic Compute Cloud

(EC2 [7]).

• Variable: Server Resources - CPU

• Value: 2 AMD EPYC vCPU’s

• Rationales: AMD EPYC is a high performance processor that has

been built using Advanced Micro Devices company’s Zen Architec-

ture. AMD EPYC are cost effective and provides good performance

[5]. They are suitable for workloads that do not need high sustainable

compute power but experience temporary spikes in usage. Which is

a good fit for our experiment.

3. The communication layer.

• Variable: Network

• Value: AWS VPC (Virtual Private Cloud) Internal Network

• Rationales: To minimize the network effect, all of our servers were

hosted inside one AWS VPC hosted in us-east-1 (N.Virginia) region.

All the traffic between different components of the system were within

this VPC.

4. The Application layer.

• Variable: Application Programming Language

• Value: Java

85

• Rationales: We used Java to build our industrial use case microser-

vices. Java is well known programming language and has a good

community base in building applications for microservices architec-

ture.

• Variable: Application Framework

• Value: Spring Boot 2.2.4.RELEASE

• Rationales: following the use of Java programming language, we

used Spring boot to build our microservices applications.

• Variable: API Gateway

• Value: AWS API Gateway [60]

• Rationales: One of the industrial solutions for the API Gateway is

AWS API Gateway. It is easy to use and configure gateway that can

provide us with the needed functionalities to conduct our experi-

ment.

5.2.5 Measuring Performance

In our experiment, performance implications is an important aspect we are tak-

ing into consideration. We measured the performance of the proposed four treat-

ments, before and after applying our security framework on one and two secu-

rity trust domains. We measured the performance of these treatments in terms

of latency overhead.

After setting up the environment and the microservices (the first phase de-

scribed in the methodology). We applied a workload and generate results.

86

To apply a proper workload we used Apache Jmeter simulation tool to initi-

ate a set of different users accessing the system. One of the most popular tools

to generate loads is Apache JMeter. Apache JMeter is an open source tool, built

using Java programming language and designed for load testing and for perfor-

mance measurements [10].

We used Apache JMeter to generate a set of API requests representing a pool

of users accessing the system. One important metric we measured is the latency

overhead, which can be defined as the total time a single API request takes to

go from the Jmeter as a starting point to its destination microservice and back

again to the JMeter.

Figure 5.2 shows our basic Apache JMeter setup. We installed the JMeter on

an AWS EC2 instance and used its command line tools to apply the workload.

The results were collected for further analysis and evaluation in the later phases.

FIGURE 5.2: Apache JMeter Setup Overview

87

5.3 Summary

In this chapter, we discussed our research methodology and the phases we fol-

lowed during the research experiment. We also presented the experimental de-

sign of the experiment. We finished the chapter by explaining our method of

measuring the performance implications of the security framework. In the next

chapter, we present the implementation technologies of the both the security

framework and the null-architecture. Then, we put the security framework in

action to verify its effectiveness. This be followed by an evaluation for the frame-

work performance and verification to prove the statistical significance of our

experiment.

88

Chapter 6

Experiment

In this chapter, we dive into the details of our experiment, starting by the imple-

mentation details of the null-architecture. After that, we describe the implemen-

tation details and technologies used to implement the security framework. Our

security framework is not tied to a specific programming language or implemen-

tation framework, any programming language can be used as long as it fulfills

the security requirements of the framework. Next, we provide a proof of the

effectiveness of the security framework by putting it in action; we demonstrate

how the security checks applied by the security framework fulfils the proposed

security requirements and mitigate against security threats. After that, we dis-

cuss the experiment runs, initial results and how we checked the significance of

the results.

6.1 Implementation Technologies

In this section, we describe the technologies we used to build our null-architecture

and the technologies we used to build the security framework components.

Any technology can be used to implement both the microservices and the secu-

rity framework components, taking into consideration that the implementation

89

should respect the various security components of the security framework and

their capabilities when choosing from the available technologies.

A feasible framework implementation should support OAuth 2, policies for

fine-grained authorization, central API Gateway for external authentication, side-

car for endpoint security and security trust domains.

Following are a list of the main components involved in the experiment and

their implementation technology details.

6.1.1 Microservices

We used Spring boot 2.2.4 on top of Java 11.0.5 to develop our three microser-

vices. Along with gradle as a dependency manager and tomcat as an application

server. The codebase can be found under the following three Github reposito-

ries:

• Marketplace https://github.com/MArouri/Marketplace

• Financial https://github.com/MArouri/financial

• Account https://github.com/MArouri/Account

Figure 6.1 shows the project structure for the Marketplace microservice.

In order to ease the development operations, we built a CI/CD (continuous

integration/continuous deployment) pipelines using AWS code pipelines, code

deploy, auto scaling groups and target groups. All of this code can be found in

the Github repositories as well.

https://github.com/MArouri/Marketplace
https://github.com/MArouri/financial
https://github.com/MArouri/Account

90

FIGURE 6.1: Microservice Project Structure Sample

91

6.1.2 API Gateway

We used AWS API Gateway as an external gateway in our security domains. We

setup two API Gateways, one for the marketplace security domain and another

for the financial security domain. Figure 6.2 shows part of the setup of the API

Gateway.

FIGURE 6.2: API Gateway Setup

6.1.3 Authorization Server

We used AWS cognito as an authorization server [11]. We defined two autho-

rization servers, one for each of the security domains. The authorization server

is responsible for issuing OAuth2 security tokens in the form of JWT. These to-

kens are temporal with time to live (TTL) of one hour and have a narrow access

that is limited to one security trust domain.

Typically, token expiration is configurable by the authorization server. The

smaller the value is, the more frequent the client application needs to refresh

92

the access token. Threats like replay attacks can impact the system for a longer

period of time if the TTL of the security token is set to a large value. When

we conducted our experiment back in March, 2020, AWS cognito didn’t have

the support to customize the token expiration, so we used the default value

of one hour for this setting. In August, 2020, AWS announced the support of

token expiration in Cognito service, the new settings allows token expiration

value to be set between 5 minutes and 24 hours [6]. Figure 6.3 shows part of the

authorization server setup.

FIGURE 6.3: Authorization Server Setup

In figure 6.4, we show the details of an JWT that was generated by the mar-

ketplace authorization server. It contains information about the subject that the

token was issued for, and other information about the issuing server. This info

will be used later to check the validity of the JWT.

6.1.4 The Sidecar for endpoint Security - Open Policy Agent

Open Policy Agent (OPA) is the authorization framework we used to achieve

fine-grained authorization in our security framework. We configured and run

93

FIGURE 6.4: JWT Sample

OPA version 0.20.5 as a sidecar process. Figure 6.5 shows an authorization policy

for the marketplace microservice written in rego (OPA high level declarative

language).

6.2 Microservices Security Framework for Authentication

and Fine Grained Authorization (MSFAA) in Action

In this section, we demonstrate the appliance of the security framework on the

null-architecture and the effectiveness of the security framework in the achieve-

ment of its designed security requirements. For demonstration purposes, we use

Postman [45], a collaboration tool for API development. Postman plays the role

of the client application accessing resource servers on the behalf of a resource

owner.

94

FIGURE 6.5: Open Policy Agent (OPA) Policy Sample Written in
Rego

6.2.1 Accessing resources in a single security trust domain

For a client application to be able to successfully retrieve data from a resource

server in a security trust domain. It first needs to acquire a valid access token

from its authorization server. Figures 6.6, 6.7, 6.8 and 6.9 depict this flow.

FIGURE 6.6: User Submits Credentials for Authentication

95

FIGURE 6.7: Authorization Server Redirects Resource Owner to
Client App with Authorization Code

FIGURE 6.8: Client Application Exchanges Authorization Code
with an Access Token

After acquiring a valid access token, the client application can call the API

Gateway endpoint of the service to retrieve information. Figure 6.10 shows a

valid request issued to the API Gateway.

96

FIGURE 6.9: Access Token Sample Details

FIGURE 6.10: Authorized API Call Sample

This flow is a direct achievement of the SecurityRequirement-1 of our secu-

rity framework; accessing user information needs data owner approval.

Figure 6.11 shows the set of the security checks applied to the API request

before it was served by the microservice.

97

FIGURE 6.11: Security Checks Applied - One Security Trust Do-
main

Using Open Policy Agent (OPA) framework enabled us to control fine-grained

authorization using policies. In this example, only job seekers can view market-

place jobs, employers do not have an access to list and retrieve marketplace jobs

to apply for. This is a manifestation for the SecurityRequirement-1 of our secu-

rity framework.

Also, OPA runs as a standalone process separating authentication logic from

the typical functionalities of the microservice. This is also a manifestation for

the SecurityRequirement-4 of our framework.

If a client application tries to access a service on behalf of a user without

proper authentication or with an invalid token. The API Gateway, which is the

main central entry point for this type of external call, will reject the request min-

imizing the architecture’s attack surface.

Figure 6.12 depicts this scenario.

In cases of authorization issues, like if an employer tries to get marketplace

jobs, API Gateway check will fail to detect this security issue and the call will

be passed to the destination microservice. The fine-grained authorization check

98

FIGURE 6.12: API Gateway Rejects Unauthorized Request

will process the request and deny the call successfully. Figure 6.13 depicts this

flow.

FIGURE 6.13: Open Policy Agent (OPA) Rejects Unauthorized
Request

99

6.2.2 Accessing resources that expand two security trust domains

In the previous section, we demonstrated the effectiveness of the security frame-

work for one security trust domain calls. In this section, we expand that to de-

scribe the flows when the API call expands multiple security trust domains.

Figure 6.14 shows the publish job API flow. The API request calls the market-

place microservice (in the marketplace security trust domain) which also needs

to check and access the employer’s active subscription in the financial microser-

vice that is located in the financial security trust domain.

The first three steps in the flow are just like the typical flow when a single

resource is called. The interesting part is in step 4, in order for the marketplace

to check the employer’s active subscription. It needs a valid access token that is

accepted by the financial microservice in the second security trust domain.

In order to do so, the marketplace microservice calls the authorization server

in the financial security trust domain and passes it’s client id and secret creden-

tials in a standard client credentials OAuth2 grant flow. A more appropriate

grant type is to use OAuth2 Token Exchange described in the RFC 8693 [42].

When we started the implementation of our framework, no framework officially

supports token exchange grant type. Only keycloak (an open source identity

and access management solution managed and maintained by RedHat) have

token-exchange grant type in preview not-fully supported mode [28].

Figure 6.15 shows an example for an API that calls the second authorization

server in the second security trust domain to acquire a new access token that is

accepted by microservices in the second security trust domain.

100

FIGURE 6.14: Multiple Security Trust Domains API Security
Checks Flow

Finally, figure 6.16 shows the successful call result. It calls the marketplace

microservice which in turn calls the financial microservice to check for active

subscriptions.

As shown in this demonstration, the financial microservice protects its data

and only allows actors with a predefined access to reach it through the appliance

of the authentication and fine-grained authorization security checks. This is a

101

FIGURE 6.15: Acquiring an Access Token for the Second Security
Trust Domain

FIGURE 6.16: Authorized API Call Sample - Two Security Do-
mains

manifestation of SecurityRequirement-3 of the security framework. Another

point to mention is that each security token is only valid for the security trust

domain in which the token was generated. Accessing the second security trust

102

domain required us to generate a new access token before calling the financial

microservice, no single token has a full access to the entire system. This is an

embodiment of the SecurityRequirement-5 of our security framework. Finally,

in case of a successful token theft, the access token will not have full access

to the system because the system holds multiple security trust domains. The

stolen access token will only be valid in the issuer’s security tryst domain. Also,

each access token is a temporal token that is valid for a short amount of time

(one hour). After that, the token will expire. This is a mitigation for the token

theft attack and an implementation of SecurityRequirement-6 of the security

framework. Our choice of one hour was based on AWS Cognito recommended

value [49]. This value can be customized based on the application needs.

6.3 Evaluation and Statistics

The experimental design and details was tuned and enhanced over a number

of iterations of dry runs. After we made sure that all confounding variables are

neutralized, a wet-run was conducted for each of the treatments. In this section,

we will show how the experiment was conducted, how the data was gathered,

combined and evaluated.

6.3.1 Experiment Runs

In the experiment, we conducted four major runs, one run for each treatment.

Table 6.1 shows the basic info of the run results.

103

TABLE 6.1: Experiment runs results

Run Sam-
ples

Avg
La-

tency

Min
La-

tency

Max
La-

tency

Std.
Dev.

Error
%

Through-
put

Rcvd
KB/
sec

Sent
KB/
sec

Avg.
Bytes

With Security
Framework -
Two Security

Trust Domains

2500 253 223 1055 39.67 0.00% 10.02 5.9 11.7 603

Without Security
Framework -
Two Security

Trust Domains

2500 226 212 1249 27.02 0.00% 10.01 5.06 2.48 517

With Security
Framework -
One Security
Trust Domain

2500 123 110 1136 38.55 0.00% 10.03 5.9 11.76 603

Without Security
Framework -
One Security
Trust Domain

2500 110 105 679 13.72 0.00% 10.03 5.06 2.51 517

The table shows that each run contains 2500 samples. Generally speaking,

having more subjects in the experiment will give it a greater statistical power. In

the dry run phase, we noticed that having a small number of samples does not

represent a stable environment neither for the run and its resources from a side,

nor for the results. After increasing the number of samples, we started to see

a repeated stable pattern in the output that represents the actual API latency of

the system. The main reason we had not more than 2500 samples in each run is

the stable results we had. The results indicated that there is no need to increase

the sample size.

Figure 6.17 shows a histogram plot that shows the relation between the num-

ber of samples and the measured API latency. As the graphs show, most of

the API samples lie in a narrow latency margin, this is simply because success-

fully neutralizing all confounding variables will leave the impact of the security

framework overhead to be measured both for single and multiple security trust

104

domains, which is a stable and semi-consistent overhead.

FIGURE 6.17: An Aggregated Overview of API Samples com-
pared to Latency

Figure 6.18 shows the API latency overhead for each individual run over the

time. Each one of the four tile represents a unique treatment in our experiment.

The x-axis shows the timeline while the y-axis shows the API latency measured

in milliseconds.

6.3.2 Normality Tests

After gathering the experiment data, the next step was to check the data nor-

mality. We can apply parametric tests on our results if it follows a gaussian

distribution. If it is not, we need to follow a non-parametric test. In order to

explore our data, we drew a quantile-quantile plot to visually check the data

105

FIGURE 6.18: API Requests Latency

normality. Comparing actual and expected values indicates that the results are

not normally distributed. Figure 6.19 shows these results.

FIGURE 6.19: Quantile - Quantile Plot

106

To statically validate this finding, we run Shapiro–Wilk normality test [53],

the p-value result for all of the four runs were zero. Which clearly indicates that

our data is not normally distributed.

6.3.3 API Latency Overhead Statistical Analysis

The next step was to examine the non-parametric tests that suit our case of four

groups with a quantitative outcome (the API latency overhead). Kruskal–Wallis

was a fit for our experiment. We ran the test on our results and obtained a p-

value equals zero. This basically means that we can reject the null-hypothesis

and support the alternative hypothesis.

We also applied two Mann-Whitney U tests. Mann-Whitney U test allows

two treatments to be compared to each other without the need that their val-

ues are normally distributed. We applied a test for the treatments of with and

without security framework on a single security trust domain and another test

for with and without security frame on two security trust domains. We also ob-

tained a p-value of zero for both tests which also indicates that we should reject

our null hypothesis and support the alternative one.

6.4 Summary

In this chapter we discussed the details of our experiment and verified the sta-

tistical significance of our results. In the next chapter, we discuss the findings we

showed across this chapter, we discuss some aspects that relate to the security

framework effectiveness and link these aspects to both the research questions

and the current state-of-the-art. We also discuss the results of the experiment

and the security framework performance impact on the system.

107

Chapter 7

Discussion

In chapter 3, we used the current state-of-the-art to address our first research

question RQ-1. We identified the main security goals that related to authen-

tication and fine-grained authorization in a microservices architecture. These

security goals formed the basis that we used to establish the main security re-

quirements for the proposed security framework.

To evaluate the proposed security framework, we moved into two dimen-

sions. The first one, was to demonstrate the effectiveness of the security frame-

work in a microservices system. While the second one was to measure the per-

formance implications of the proposed framework. We discuss each of these

points in the subsequent sections.

7.1 Security Framework Effectiveness

In this section, we discuss the effectiveness of the our proposed security frame-

work from three perspectives:

• Taking advantage of the state-of-the-art security frameworks strengths and

limitations.

108

• Security requirements satisfaction.

• Security framework generalizability and portability.

The following sections discuss the details of these perspectives:

7.1.1 State-of-the-art Security Frameworks Strengths and Limitations

Based on the first research question RQ-1, we were able to identify a set of se-

curity frameworks that targets authentication and fine-grained authorization in

a microservices architecture. Each of these microservices has its strengths and

weaknesses. Yargina’s at. el. proposed a security framework that redefined

the security perimeter and adopted the defence in depth security principle [62].

Nehme at. el. also used a local API Gateway at the front of each microservice

to apply the defence in depth principle [38]. Our security framework took the

defence in depth security principle as a first class citizen. We used a sidecar for

security endpoint technique to ensure that the security perimeters are pushed

inwards toward the microservice boundaries. Using sidecars provided the so-

lution with other advantages including decoupling security from business logic

and providing the ability for security policies to be configured, redeployed and

managed independently from the microservice logic.

One main difference between our proposed security framework and the ex-

isting frameworks is that our security framework took an advantage of the ex-

isting system boundary. While defining the microservice boundaries as the se-

curity perimeter defence, we added a new centralized authentication check at

the API Gateway level. This check will only processes the external HTTP REST

calls. This central authentication check provides the system with capability to

fail fast when processing illegitimate requests. Being satisfied only by pushing

109

the perimeter defence toward the microservices makes the microservices them-

selves the first line of defence and the solo player to protect their resources from

outsider attacks. Our proposed check centrally validates every incoming HTTP

request and forbids the unauthenticated requests from passing through to the

destination microservice.

Yargina’s security framework suggested the generation of a new JWT per

request [62]. This can be an overwhelming process from a performance perspec-

tive. Hitting the authorization server to generate a new token for every API

request generates high load on the authorization server and introduces latency

overhead to each API. Nehme proposed another approach by using an OAuth

client for every pair of microservices [38]. This basically means that the flow will

return to the user for notification and consensus in each new microservices inte-

gration. This also can be overwhelming especially if the interacted microservices

have similar functionalities and lie within the same trust boundaries.

Our proposed security framework suggests dividing the system into mul-

tiple security trust domains, where microservices that serve the same business

domain and hold related data reside within the same security trust boundary.

Each security trust domain has its own authorization server and issues access

tokens that are only valid within the boundaries of this particular domain. If a

microservice needs to interact with a second microservice outside it’s security

trust domain. It needs to acquire a new access token from the authorization

server in the destination security trust domain.

Following this approach, we gain two main advantages. The first one is

avoiding the generation a new access token per API request, which had a pos-

itive impact on the performance of our security framework. The second one is

110

that the usage of multiple security trust domains makes us avoid the usage of

powerful tokens, no single access token can have access to the entire system.

7.1.2 Security Requirements Satisfaction

In order to check if the security checks meet the proposed security requirements,

we implemented a microservices based-system that represents a real business

use case. We also implemented the proposed security framework and applied it

to the microservices system. In chapter 6 we showed a set of scenarios to check

and demonstrate the satisfaction of the security requirements. We also discussed

in detail how each of the security checks contributes to the overall satisfaction

of the security requirements.

7.1.3 Security framework generalizability and portability

One of the challenges we faced was to keep the proposed security framework

applicable to a broad set of microservices systems. In order to achieve this, the

following aspects were taken into consideration during the design of the secu-

rity framework as well as during the experiment:

• Industrial use case

• Cloud based framework

• Security standards

• Sidecar for endpoint security

Following are the details for each of them:

111

7.1.3.1 Industrial use case

When we designed our experiment, we picked up a real business use case to

form the null-architecture for our experiment. This gave us a better realistic

view of the microservices internal details, their architecture and complexities.

The architectural elements that have been used to design the use case are a

set of typical components that can be found in any microservices system. This

includes the API Gateway and the microservices themselves, no more basic ele-

ments are required to be able to apply our security framework. Both API Gate-

way and microservices components are foundational blocks that can be found

in any typical microservices system. The security framework does not require

any type of virtualization or containerization layers to exist, it can be applied to

both flavors. It can also be applied to microservices systems built on serverless

architecture.

7.1.3.2 Cloud based framework

In our experiment, we used AWS cloud provider to build both the null-architecture

and the security framework. The International Data Corporation indicated that

the majority of the microservices systems are cloud based. By 2021, 80% of ap-

plication development on cloud platforms will be built using Microservices ar-

chitecture [31]. This was a motivation to conduct our experiment using one of

the well-known public cloud providers.

7.1.3.3 Security standards

Our proposed security framework is built using a set of security standards and

frameworks. It uses OAuth 2 for authentication, JWT for security token repre-

sentation and Open Policy Agent (OPA) for fine-grained authorization. All of

112

these elements are well known and widely adapted.

The security framework proposed by Nehme [38] uses XACML and the se-

curity framework proposed by Preuveneers [46] uses a JSON based lightweight

definition of XACML. Despite that XACML is a well known, relatively old and

mature standard, it does not see a wide adoption in the industry due to its man-

agement complexities. XACML is also not suitable for cloud and distributed

deployment[61]. We avoided the use of XACML in our framework and sug-

gested the use of Open Policy Agent (OPA) security framework. It has similar

capabilities in terms of fine-grained authorization. It’s simpler to use, maintain

and manage.

7.1.3.4 Sidecar for endpoint security

We used Open Policy Agent (OPA) as a sidecar for endpoint security, this ab-

stracted the details of the fine-grained authorization engine and decoupled the

microservices system from its security framework. Using the sidecar for end-

point security technique allows implementing the proposed security framework

not only using Open Policy Agent (OPA), any security framework that is capable

of supporting fine-grained authorization can be used.

All of these four aspects helps generalize the security framework applicabil-

ity to and eases its adaptability in microservices systems.

7.2 Security Framework Performance

7.2.1 Security Framework Performance Implications

In order to answer the third research question RQ-3, we designed an experi-

ment to measure the API latency overhead of the proposed security framework.

113

Experiment design, setup, applying workload and generating results were dis-

cussed in chapter 6.

After running the experiment, we were able to reject the null-hypothesis and

support the alternative hypothesis which indicates that there is a difference be-

tween the baseline architecture (the null-architecture) and the proposed architec-

ture with security checks applied on the performance of the system (measured

by API latency overhead). In order to understand this difference, we drew two

graphs. Figure 7.1 shows the API latency overhead comparison between the sys-

tem without the security framework applied and with the security framework

applied given that the system only contains one security trust domain.

FIGURE 7.1: API Latency Overhead with One Security Trust Do-
main

The number shows that an overhead of 11.9% results from the addition of

the security framework to the system.

114

The second comparison is shown in figure 7.2. It shows the API latency over-

head comparison between the system without the security framework applied

and with the security framework applied when the system has two security trust

domains.

FIGURE 7.2: API Latency Overhead with Two Security Trust Do-
mains

Numbers show that an overhead of 12% results from the addition of the se-

curity framework to the system. We noticed that in both cases, the API latency

overhead has almost the same percentage; around 12%.

From our experiment perspective, when the system have a single security

trust domain with the security framework applied, the total API latency over-

head or the Request Trip Time (RTT) can be measured as:

Request Trip Time (RTT) = base request latency overhead + security framework over-

head

Where the "base latency overhead" includes all processing phases the request

115

passes through; including application processing time, API gateway processing

time, load balancer processing time and networking time.

When a request is issued to a microservice that can serve the request without

the need to call the service of other microservices, the request will pass through

one API gateway, one load balancer and will be processed by one microservice

application. The existence of the security framework will apply multiple checks

on the request at the API gateway stage and at the sidecar stage.

On the other hand, if the request to the destination microservice requires

calling other microservices in other security trust domains, additional delays

will encounter the request. If the request requires the destination microservice

to call a service of only one microservice in a second security trust domain, RTT

will almost double assuming that both microservices will take similar time to

serve the request. It will pass through two API gateways, two load balancers

and two microservice applications.

Same can be said about the security framework checks, it will double as well.

The request will be checked by the two API gateways (one for each security trust

domain) and by the two sidecars (one for each microservice). The proportion

between the number of microservices the request will span across different se-

curity trust domains and the number of security checks it will encounter by the

security framework is almost linear. We measured this value and it was 12% of

the request total trip time. This observation can be generalized if the system has

more than two security trust domains.

We believe that this overhead is acceptable in a microservices system due

to the nature that microservices are slower than typical monolithic applications.

116

Microservices require hops between the different services of the system that are

separated by the network. We believe that our approach is an acceptable one

specially for microservices applications that consider security as an essential and

critical aspect.

In their experiment, Yargina stated that their security framework added around

11% overhead to the requests [62]. As we discussed in chapter 3, one of the main

differences between Yargina’s framework and ours is that their security frame-

work lacks the real existence of a fine-grained authorization support. Nehme

discussed that their security framework added 32% overhead in average to each

request [38]. They also stated that the overhead of access token checks is mini-

mal compared to the overhead caused by the heavy XACML check.

7.2.2 Implementing a second security framework

During our study, there were three main security frameworks we found in litera-

ture which discussed authentication and fine-grained authorization in microser-

vices architecture. We looked into the details for each of these frameworks, their

strengths and limitations. We took advantage of the current state-of-the-art and

built our security framework taking into consideration not to reinvent the wheel

as well as to identify the research gap in a trial to contribute to the current re-

searchers effort, pushing the research in this particular area to cope with the

advances in microservices architecture.

We did not implement a proof of concept for Yargine’s security framework

and compare it with our proposed framework. The main reason was mainly be-

cause Yargina’s security framework lacks the real existence of fine-grained au-

thorization support [62]. They used mTLS, OAuth2 and JWT to implement the

117

security framework, without the usage of a fine-grained authorization security

framework like XACML or OPA.

The second choice of implementation was using Davy’s et. al. security

framework [46], the suggested framework handled authentication and fine-grained

authorization in a microservices architecture. The authors suggested a lightweight

access control policy language that was based on a simplified derived version

of XACML, in which they used Java Script Object Notation (JSON) instead of

XAML. We didn’t see an adoption for this suggestion neither in academia nor in

the industry; so we avoided implementing their proof of concept. In our opin-

ion, this is due to two reasons; XACML is relatively old, complex to manage,

did not see a wide adoption in the industry and not suitable for cloud and dis-

tributed deployment [55]. The second reason is that forked libraries need an

active community around them to keep them flexible, agile, maintained and re-

liable which we didn’t find.

The third security framework we focused on was suggested by Nehme et. al.

in which they implemented a security framework using OAuth2 and XACML

to achieve authentication and fine-grained authorization. They used ForgeRock

access management and identity gateway on a local machine where they ran

their experiment. We tried to bring this solution to the cloud and apply it to

our null-architecture, during the process, we faced a problem where the identity

gateway can not be obtained unless we have an active ForgeRock subscription.

We tried to apply for the product explaining that we are a group of researchers

who are seeking the usage of ForgeRock’s products for research purposes but

we didn’t get an answer.

118

7.3 Summary

In this chapter, we discussed the security framework effectiveness and its per-

formance implications. In the next chapter, we derive our conclusions, discuss

future work and threats to validity.

119

Chapter 8

Conclusions and Future Work

This chapter discusses the conclusion of the thesis, it also highlights future work.

We finish this chapter by discussing internal and external threats to validity.

8.1 Conclusion and Future Work

Microservices architecture is an evolving trend in software engineering that en-

ables building large scale, highly scalable, available and flexible systems. It

has been gaining a lot of attention, adoption and momentum in the past few

years. This big momentum is pushed by microservices characteristics like en-

abling technology heterogeneity, using the right tool for the right job, resilience,

ease of deployment, better organizational alignment and easier scalability and

replaceability.

Microservices are not a silver bullet, their benefits do not come without a

price. Microservices have all the inherited complexities of distributed systems,

testing, monitoring and security become more challenging and harder to man-

age. One of the main aspects for microservices security is authentication and

authorization.

120

In this research, we started by exploring microservices authentication and

authorization state-of-the-art. We identified the main set of security goals the re-

searchers focused on to address microservices security challenges which helped

us highlight the limitations in current practices.

After that, we explored existing authentication and fine-grained security

frameworks, their strengths and weaknesses. Some of these frameworks lack

the real existence of fine-grained authorization capabilities, others do not use

security standards and implement their own security components.

In this thesis, we proposed a new security framework for authentication and

fine-grained authorization in a microservices architecture. The framework is

built to achieve a set of identified security requirements and mitigates against

a set of identified security threats. Our framework is built on top of Open Au-

thorization (OAuth2), JSON Web Tokens (JWT) and Open Policy Agent (OPA).

Throughout this research, we discussed the architecture and sequential flows of

the proposed security framework.

One aspect that we focused on in this research was to show the effectiveness

of the security framework. In order to do so, we built a concrete example of a

microservice-based system that is derived from an industrial use case; Applicant

Tracking System (ATS). We used this motivating use case as our null-architecture

and on top of it, we applied our security framework components. We used this

deployment to demonstrate the appliance of the security framework and the

achievement of its designed security requirements.

Another main aspect we focused on was the performance implications of

the proposed security framework in terms of API latency overhead. In order to

121

measure that, we designed and conducted an experiment in which we used the

previous implementation we built for both the null-architecture and the security

framework and on top of that, we applied a workload using Apache JMeter

and generated results. We extracted and combined these results to study the

performance implications of the proposed security framework. An overhead of

12% is added to the REST API calls that are caused by the security checks which

have been added by the security framework.

We believe that this extra performance cost is acceptable in a microservices

system due to two reasons. One reason is that microservices are tolerant to de-

lays due to their nature as a distributed system that already uses the network to

communicate between services. The second reason is that microservices secu-

rity is an essential and critical aspect, adding extra performance cost in favor of

securing the system is beneficial for the overall system.

Future work that can be developed include:

• Expanding the security framework to include other synchronous commu-

nication styles other than HTTP REST APIs, like GraphQL and gRPC Re-

mote Procedure Calls (gRPC) [19, 20].

• Expanding the security framework to include asynchronous communica-

tion styles for inter-communication between microservices either in a sin-

gle or multiple security trust domains.

122

8.2 Threats to Validity

Internal Validity:

• One of the threats to internal validity of our experiment is the network.

During the experiment, we set up all of our resources inside an AWS VPC

(Virtual Private Cloud). All communications between microservices, au-

thorization servers, load balancers and JMeter instances happened inside

this VPC. Despite that, network effect is a hard factor to eliminate during

an experiment and it may affect the accuracy of our API latency measure-

ments.

• JMeter as a testing and sampling tool may have an instrumentation effect

in our experiment. To avoid this threat impact, we recalibrated JMeter set-

tings and resources to make sure it has no impact on the experiment result.

We also did a number of dry-runs with different sample sizes before the ac-

tual wet-run to make sure we have a stable environment and reproducible

results.

External Validity:

• In this study, we picked an industrial use case as a microservices system.

We tried to pick a use case that represents a wide range of microservices

systems. One of the threats is if this use case does not represent the general

population of microservices systems. This may impact the generalizability

of our study.

123

Bibliography

[1] Luciano de Aguiar Monteiro et al. “A Survey on Microservice Security–

Trends in Architecture, Privacy and Standardization on Cloud Computing

Environments”. In: International Journal on Advances in Security Volume

11, Number 3 & 4, 2018.

[2] Mohsen Ahmadvand and Amjad Ibrahim. “Requirements reconciliation

for scalable and secure microservice (de) composition”. In: 2016 IEEE 24th

International Requirements Engineering Conference Workshops (REW). IEEE.

2016, pp. 68–73.

[3] Nuha Alshuqayran, Nour Ali, and Roger Evans. “A systematic mapping

study in microservice architecture”. In: 2016 IEEE 9th International Con-

ference on Service-Oriented Computing and Applications (SOCA). IEEE. 2016,

pp. 44–51.

[4] Amazon. Amazon architecture. 2019. URL: http://highscalability.

com/amazon-architecture.

[5] Amazon AMD. URL: https://aws.amazon.com/blogs/aws/now-

available-amd-epyc-powered-amazon-ec2-t3a-instances/.

[6] Amazon Cognito User Pools now supports customization of token expiration.

2020. URL: https://aws.amazon.com/about-aws/whats-new/

http://highscalability.com/amazon-architecture
http://highscalability.com/amazon-architecture
https://aws.amazon.com/blogs/aws/now-available-amd-epyc-powered-amazon-ec2-t3a-instances/
https://aws.amazon.com/blogs/aws/now-available-amd-epyc-powered-amazon-ec2-t3a-instances/
https://aws.amazon.com/about-aws/whats-new/2020/08/amazon-cognito-user-pools-supports-customization-of-token-expiration/
https://aws.amazon.com/about-aws/whats-new/2020/08/amazon-cognito-user-pools-supports-customization-of-token-expiration/

124

2020/08/amazon-cognito-user-pools-supports-customization-

of-token-expiration/.

[7] Amazon EPS. URL: https://aws.amazon.com/ebs.

[8] Amazon Linux 2. URL: https://aws.amazon.com/amazon-linux-

2/.

[9] amazon web services (aws) - cloud computing services. URL: https://aws.

amazon.com/.

[10] Apache JMeterTM. URL: http://jmeter.apache.org/.

[11] AWS Cognito. URL: https://aws.amazon.com/cognito/.

[12] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. “Microser-

vices architecture enables devops: Migration to a cloud-native architec-

ture”. In: vol. 33. 3. IEEE, 2016, pp. 42–52.

[13] Uber Engineering Blog. Service-oriented architecture: Scaling the uber engi-

neering codebase as we grow. 2019. URL: https://eng.uber.com/soa/.

[14] Stefano Calzavara et al. “Testing for integrity flaws in web sessions”. In:

European Symposium on Research in Computer Security. Springer. 2019, pp. 606–

624.

[15] Paolo Di Francesco, Ivano Malavolta, and Patricia Lago. “Research on ar-

chitecting microservices: Trends, focus, and potential for industrial adop-

tion”. In: 2017 IEEE International Conference on Software Architecture (ICSA).

IEEE. 2017, pp. 21–30.

[16] Nicola Dragoni et al. “Microservices: yesterday, today, and tomorrow”. In:

Present and ulterior software engineering. Springer, 2017, pp. 195–216.

https://aws.amazon.com/about-aws/whats-new/2020/08/amazon-cognito-user-pools-supports-customization-of-token-expiration/
https://aws.amazon.com/about-aws/whats-new/2020/08/amazon-cognito-user-pools-supports-customization-of-token-expiration/
https://aws.amazon.com/about-aws/whats-new/2020/08/amazon-cognito-user-pools-supports-customization-of-token-expiration/
https://aws.amazon.com/ebs
https://aws.amazon.com/amazon-linux-2/
https://aws.amazon.com/amazon-linux-2/
https://aws.amazon.com/
https://aws.amazon.com/
http://jmeter.apache.org/
https://aws.amazon.com/cognito/
https://eng.uber.com/soa/

125

[17] Christian Esposito, Aniello Castiglione, and Kim-Kwang Raymond Choo.

“Challenges in delivering software in the cloud as microservices”. In: vol. 3.

5. IEEE Cloud Computing, 2016, pp. 10–14.

[18] Jean-Philippe Gouigoux and Dalila Tamzalit. “From monolith to microser-

vices: Lessons learned on an industrial migration to a web oriented ar-

chitecture”. In: 2017 IEEE International Conference on Software Architecture

Workshops (ICSAW). IEEE. 2017, pp. 62–65.

[19] GraphQL. URL: https://graphql.org/.

[20] gRPC: A high-performance, open source universal RPC framework. URL: https:

//grpc.io/.

[21] D Hardt. RFC6749-The OAuth 2.0 Authorization Framework. Oct. 2012. URL:

https://tools.%20ietf.%20org/html/rfc6749.

[22] Bret Hartman et al. Mastering Web services security. John Wiley & Sons,

2003.

[23] IETF OAuth Working Group. URL: www.ietf.org/mailman/listinfo/

oauth.

[24] Kasun Indrasiri and Prabath Siriwardena. “Securing Microservices”. In:

Microservices for the Enterprise. Springer, 2018, pp. 347–371.

[25] Kai Jander, Lars Braubach, and Alexander Pokahr. “Defense-in-depth and

Role Authentication for Microservice Systems”. In: vol. 130. Procedia com-

puter science, 2018, pp. 456–463.

[26] Bokefode Jayant D et al. “Analysis of dac mac rbac access control based

models for security”. In: vol. 104. 5. International Journal of Computer

Applications, 2014, pp. 6–13.

https://graphql.org/
https://grpc.io/
https://grpc.io/
https://tools.%20ietf.%20org/html/rfc6749
www.ietf.org/mailman/listinfo/oauth
www.ietf.org/mailman/listinfo/oauth

126

[27] JSON Web Token (JWT). URL: https : / / tools . ietf . org / html /

rfc7519.

[28] Keycloak Identity and Access Management Solution. URL: https://www.

keycloak.org/.

[29] Joseph Migga Kizza. Guide to computer network security. Springer, 2013.

[30] Chirag Langaliya and Rajanikanth Aluvalu. “Enhancing cloud security

through access control models: A survey”. In: vol. 112. 7. International

Journal of Computer Applications, 2015.

[31] Xabier Larrucea et al. “Microservices”. In: vol. 35. 3. IEEE Software, 2018,

pp. 96–100.

[32] J Lewis and M Fowler. Microservices. 2014. URL: https://martinfowler.

com/articles/microservices.html.

[33] Steve Lipner. “The trustworthy computing security development lifecy-

cle”. In: 20th Annual Computer Security Applications Conference. IEEE. 2004,

pp. 2–13.

[34] Manage swarm security with public key infrastructure (PKI). Jan. 2020. URL:

https://docs.docker.com/engine/swarm/how-swarm-mode-

works/pki/.

[35] Genc Mazlami, Jürgen Cito, and Philipp Leitner. “Extraction of microser-

vices from monolithic software architectures”. In: 2017 IEEE International

Conference on Web Services (ICWS). IEEE. 2017, pp. 524–531.

[36] Meaning of granularity in English. URL: https://dictionary.cambridge.

org/dictionary/english/granularity.

[37] Scott Morrison. Securing Microservice APIs. O’Reilly Media, Inc., 2018.

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://www.keycloak.org/
https://www.keycloak.org/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://docs.docker.com/engine/swarm/how-swarm-mode-works/pki/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/pki/
https://dictionary.cambridge.org/dictionary/english/granularity
https://dictionary.cambridge.org/dictionary/english/granularity

127

[38] Antonio Nehme et al. “Fine-Grained Access Control for Microservices”.

In: International Symposium on Foundations and Practice of Security. Springer.

2018, pp. 285–300.

[39] Antonio Nehme et al. “Securing Microservices”. In: vol. 21. 1. IT Profes-

sional, 2019, pp. 42–49.

[40] Sam Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly

Media, 2015. ISBN: 1491950358. URL: https : / / www . amazon . com /

Building-Microservices-Designing-Fine-Grained-Systems/

dp/1491950358?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=

chimbori05-20&linkCode=xm2&camp=2025&creative=165953&

creativeASIN=1491950358.

[41] NGINX. Microservices at netflix: Lessons for architectural design. 2019. URL:

https://www.nginx.com/blog/microservices-at-netflix-

architectural-bestpractices/.

[42] OAuth 2 Toekn Exchange. URL: https://tools.ietf.org/html/

rfc8693.

[43] OAuth 2.0. URL: https://oauth.net/2/.

[44] Open Policy Agent. URL: http://www.openpolicyagent.org/.

[45] Postman. URL: https://www.postman.com/.

[46] Davy Preuveneers and Wouter Joosen. “Access control with delegated au-

thorization policy evaluation for data-driven microservice workflows”. In:

vol. 9. 4. Future Internet, 2017, p. 58.

[47] Chris Richardson. Microservices Patterns: With examples in Java. Manning

Publications, 2018. ISBN: 1617294543. URL: https : / / www . amazon .

com/Microservices-Patterns-examples-Chris-Richardson/

https://www.amazon.com/Building-Microservices-Designing-Fine-Grained-Systems/dp/1491950358?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1491950358
https://www.amazon.com/Building-Microservices-Designing-Fine-Grained-Systems/dp/1491950358?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1491950358
https://www.amazon.com/Building-Microservices-Designing-Fine-Grained-Systems/dp/1491950358?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1491950358
https://www.amazon.com/Building-Microservices-Designing-Fine-Grained-Systems/dp/1491950358?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1491950358
https://www.amazon.com/Building-Microservices-Designing-Fine-Grained-Systems/dp/1491950358?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1491950358
https://www.nginx.com/blog/microservices-at-netflix-architectural-bestpractices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-bestpractices/
https://tools.ietf.org/html/rfc8693
https://tools.ietf.org/html/rfc8693
https://oauth.net/2/
http://www.openpolicyagent.org/
https://www.postman.com/
https://www.amazon.com/Microservices-Patterns-examples-Chris-Richardson/dp/1617294543?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1617294543
https://www.amazon.com/Microservices-Patterns-examples-Chris-Richardson/dp/1617294543?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1617294543
https://www.amazon.com/Microservices-Patterns-examples-Chris-Richardson/dp/1617294543?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1617294543

128

dp/1617294543?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=

chimbori05-20&linkCode=xm2&camp=2025&creative=165953&

creativeASIN=1617294543.

[48] E Rissanen. eXtensible Access Control Markup Language (XACML) Version

3.0. 2013. URL: http://docs.oasis-open.org/xacml/3.0/xacml-

3.0-core-spec-os-en.html.

[49] Herman Roose. Cognito. URL: https://docs.aws.amazon.com/

cognito / latest / developerguide / amazon - cognito - user -

pools-using-tokens-with-identity-providers.html.

[50] Scott Rose et al. Zero Trust Architecture. Tech. rep. National Institute of

Standards and Technology, 2019.

[51] Riccardo Scandariato, Kim Wuyts, and Wouter Joosen. “A descriptive study

of Microsoft’s threat modeling technique”. In: vol. 20. 2. Requirements En-

gineering, 2015, pp. 163–180.

[52] Secure Production Identity Framework for Everyone. URL: https://spiffe.

io/.

[53] Samuel Sanford Shapiro and Martin B Wilk. “An analysis of variance test

for normality (complete samples)”. In: vol. 52. 3/4. Biometrika, 1965, pp. 591–

611.

[54] Yuqiong Sun, Susanta Nanda, and Trent Jaeger. “Security-as-a-service for

microservices-based cloud applications”. In: 2015 IEEE 7th International

Conference on Cloud Computing Technology and Science (CloudCom). IEEE.

2015, pp. 50–57.

[55] Chalee Thammarat et al. “A secure lightweight protocol for NFC com-

munications with mutual authentication based on limited-use of session

https://www.amazon.com/Microservices-Patterns-examples-Chris-Richardson/dp/1617294543?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1617294543
https://www.amazon.com/Microservices-Patterns-examples-Chris-Richardson/dp/1617294543?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1617294543
https://www.amazon.com/Microservices-Patterns-examples-Chris-Richardson/dp/1617294543?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1617294543
https://www.amazon.com/Microservices-Patterns-examples-Chris-Richardson/dp/1617294543?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1617294543
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://spiffe.io/
https://spiffe.io/

129

keys”. In: 2015 International conference on information networking (ICOIN).

IEEE. 2015, pp. 133–138.

[56] The Transport Layer Security (TLS) Protocol Version 1.2. URL: IETF%20Tools,

%20tools.ietf.org/html/rfc5246#section-7.4.6.

[57] Axel Van Lamsweerde. “Goal-oriented requirements engineering: A guided

tour”. In: Proceedings fifth ieee international symposium on requirements engi-

neering. IEEE. 2001, pp. 249–262.

[58] Mario Villamizar et al. “Evaluating the monolithic and the microservice

architecture pattern to deploy web applications in the cloud”. In: 2015 10th

Computing Colombian Conference (10CCC). IEEE. 2015, pp. 583–590.

[59] Why You Can’t Talk About Microservices Without Mentioning Netflix. URL:

https://smartbear.com/blog/develop/why-you-cant-talk-

about-microservices-without-ment/.

[60] X.400 Gateway API Specification ; X.400 API Associations. 1989. URL: https:

//aws.amazon.com/api-gateway/.

[61] XACML is Dead. URL: https://go.forrester.com/blogs/13-05-

07-xacml_is_dead/.

[62] Tetiana Yarygina and Anya Helene Bagge. “Overcoming security chal-

lenges in microservice architectures”. In: 2018 IEEE Symposium on Service-

Oriented System Engineering (SOSE). IEEE. 2018, pp. 11–20.

IETF%20Tools,%20tools.ietf.org/html/rfc5246#section-7.4.6
IETF%20Tools,%20tools.ietf.org/html/rfc5246#section-7.4.6
https://smartbear.com/blog/develop/why-you-cant-talk-about-microservices-without-ment/
https://smartbear.com/blog/develop/why-you-cant-talk-about-microservices-without-ment/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://go.forrester.com/blogs/13-05-07-xacml_is_dead/
https://go.forrester.com/blogs/13-05-07-xacml_is_dead/

130

Appendices

131

Appendix A

Architectural and Sequential Diagrams Sym-

bols Definitions

Figure A.1 shows the symbols used across the research sequence and architec-

tural diagrams and a simple description about each of them.

FIGURE A.1: Architectural and Sequential Diagrams Symbol
Definitions

	Abstract
	Introduction
	Microservices Overview
	Microservices Definition
	Basic Microservices Characteristics
	Comparing Microservices with Monolithic Applications
	Microservices Advantages
	Microservices Disadvantages
	The Lack of Research about Microservices Aspects
	Available schemes for Authentication and Authorization
	Research Objectives and Problem Statement
	Summary of contributions
	Structure of this thesis

	Background
	Access Control Models
	Mandatory Access Control (MAC)
	Discretionary Access Control (DAC)
	Role-Based Access Control (RBAC)
	Attribute based Access Control (ABAC)

	Security Tokens Platforms
	API Keys
	Open Authorization (OAuth2)
	OpenID Connect
	JSON Web Tokens (JWT)

	Fine-Grained Authorization Frameworks
	Comparison between Fine-grained authorization and Coarse-grained authorization
	The eXtensible Access Control Markup Language (XACML)
	Open Policy Agent (OPA)

	Emerging Security Techniques
	Sidecar for Endpoint Security
	Multiple Trust Domains

	Connecting the Dots
	Summary

	Literature Review
	Microservices in Literature
	Microservices Security in Literature
	Microservices Security Goals
	Defend the Greater Attack Surface
	Handle Network and Communication Complexity
	Establish Trust between Microservices

	Authentication/Fine-Grained Authorization Security Frameworks
	Summary

	Microservices Security Framework for Authentication and Fine Grained Authorization (MSFAA)
	Motivating Use Case, The Applicant Tracking System (ATS)
	Functional Requirements
	Modeling Microservices
	REST APIs Design

	Security Requirements and Assumptions
	Security Requirements
	Security Assumptions

	The Security Model
	Security Model Services
	The Certificate Authority Service (CA)
	The Authorization Server
	The API Gateway
	The Sidecar for endpoint Security
	Security Trust Domains

	Security Standards
	Security Model Architectural Diagrams
	Security Checks and the Appliance of Security Requirements
	Security Model Sequential Flows

	Threat Model
	Threats and Counter measurements
	Network Threats
	Host Threats
	Application Threats
	Parameter Manipulation

	Summary

	Methodology and Experimental Design
	Research Methodology
	Experiment Design
	Research Hypothesis
	Dependent Variable
	Independent Variables
	Neutralized Variables
	Measuring Performance

	Summary

	Experiment
	Implementation Technologies
	Microservices
	API Gateway
	Authorization Server
	The Sidecar for endpoint Security - Open Policy Agent

	Microservices Security Framework for Authentication and Fine Grained Authorization (MSFAA) in Action
	Accessing resources in a single security trust domain
	Accessing resources that expand two security trust domains

	Evaluation and Statistics
	Experiment Runs
	Normality Tests
	API Latency Overhead Statistical Analysis

	Summary

	Discussion
	Security Framework Effectiveness
	State-of-the-art Security Frameworks Strengths and Limitations
	Security Requirements Satisfaction
	Security framework generalizability and portability
	Industrial use case
	Cloud based framework
	Security standards
	Sidecar for endpoint security

	Security Framework Performance
	Security Framework Performance Implications
	Implementing a second security framework

	Summary

	Conclusions and Future Work
	Conclusion and Future Work
	Threats to Validity

	Bibliography
	Appendices
	Architectural and Sequential Diagrams Symbols Definitions

